缺失值的填补方法是什么?
【摘要】(1)Excel实现缺失值填充前后的对比如下图所示:上图是数据填充前后的对比,年龄这一列我们使用平均值进行填充,性别这一列我们使用众数进
处理数据过程中,一般而言只要数据缺失的比例不不大于30%,就应该尽可能不做删除处理,而是选择进行做缺失值填补,那么有哪些填补的办法呢?
(1)Excel实现
在Excel中,缺失值的填充和缺失值删除一样,利用的也是定位条件,先把缺失值找到,然后在第一个缺失值的单元格中输入要填充的值,最常用的就是用0填充,输入以后按Ctrl+Enter组合键就可以对所有缺失值进行填充处理。
缺失值填充前后的对比如下图所示:
在数据中年龄用数字填充合适,但是性别用数字填充就不太合适,那么可不可以分开填充呢?答案是可以的,选中想要被填充的那一列,按照填充全部数据的方式进行填充就可以了,只不过如果想要要填充几列,则需要执行几次这样的操作。
上图是数据填充前后的对比,年龄这一列我们使用平均值进行填充,性别这一列我们使用众数进行填充。
除了用0填充、平均值填充、众数(大多数)填充,还有向前填充(即用缺失值的前一个非缺失值填充,比如上个例子中编号A3 对应的缺失年龄的前一个非缺失值就是16)、向后填充(与向前填充对应)等方式。
(2)Python实现
在Python中,我们利用的 fillna ( ) 方法对数据表中的所有缺失值进行填充,在fillna ( )后面的括号中输入要填充的值即可。
在Python中我们也可以按不同列进行填充,只要在函数fillna ( ) 方法的括号中指明列名即可。
上面的代码中只针对性别这一列进行了填充处理,数据中其他列均未进行任何更改。
也可以同时对多个列填充不同的值:
虽然数据时代的数据收集相对更容易,但是仍然要爱惜数据,所以缺失值的填补方法非常重要,大家要重视!
就业培训申请领取
环球青藤
官方QQ群扫描上方二维码或点击一键加群,免费领取大礼包,加群暗号:青藤。 一键加群
数据分析师相关文章推荐
|数据分析师最新文章推荐
刷题看课 APP下载
免费直播 一键购课
代报名等人工服务
- 1 传统数据和大数据的区别
- 2 数据分析的8种方法都是哪些?
- 3 数据分析的具体流程是什么?
- 4 3大常用的数据分析工具是什么?
- 5 excel中的运算符
- 6 数据分析的作用有哪些?
- 7 电子商务需要分析哪些数据?
- 8 数据分析包括哪些内容?
- 9 数据分析的基本步骤
- 10 rdd是什么?