常用的数据挖掘方法有哪些?
【摘要】通常情况下,数据分析师想要做好数据分析工作,除了注意数据分析过程中的重要环节之外,还要掌握一些必要的数据分析方法,数据挖掘就是数据分析过程的重要环节之一。那么,常用的数据挖掘方法有哪些呢?下面就跟随小编一起来了解下吧!
1、统计技术。数据挖掘涉及的科学领域和技术很多,如统计技术。统计技术对数据集进行挖掘的主要思想是:统计的方法对给定的数据集合假设了一个分布或者概率模型(例如一个正态分布)然后根据模型采用相应的方法来进行挖掘。
2、关联规则。数据关联是数据库中存在的一类重要的可被发现的知识。若两个或多个变量的取值之I司存在某种规律性,就称为关联。关联可分为简单关联、时序关联、因果关联。关联分析的目的是找出数据库中隐藏的关联网。有时并不知道数据库中数据的关联函数,即使知道也是不确定的,因此关联分析生成的规则带有可信度。
3、基于历史的MBR(Memory-based Reasoning)分析。先根据经验知识寻找相似的情况,然后将这些情况的信息应用于当前的例子中。这个就是MBR(Memory Based Reasoning)的本质。MBR首先寻找和新记录相似的邻居,然后利用这些邻居对新数据进行分类和估值。使用MBR有三个主要问题,寻找确定的历史数据;决定表示历史数据的最有效的方法;决定距离函数、联合函数和邻居的数量。
关于常用的数据挖掘方法有哪些,环球青藤小编就和您分享到这了。如若您对大数据工程有浓厚的兴趣,希望这篇文章可以为您提供帮助。倘若您还想了解更多关于数据分析师、大数据工程师的技巧及素材等内容,可以点击本站的其他文章进行学习。
就业培训申请领取
环球青藤
官方QQ群扫描上方二维码或点击一键加群,免费领取大礼包,加群暗号:青藤。 一键加群
刷题看课 APP下载
免费直播 一键购课
代报名等人工服务