当前位置: 首页 > 数据分析师 > 数据分析师实战技能 > 数据分析师数据分析 > 数据分析的8种方法都是哪些?

数据分析的8种方法都是哪些?

发布时间:2020年11月05日 06:56:52 来源:环球青藤 点击量:7718

【摘要】数据分析的思路可以帮助搭建一个清晰的数据分析思路框架。那么,对于具体的业务场景问题,我们又该怎么办呢?今天小编将为大家分享数据分析的8种方法,感兴趣的小伙伴们快来了解下吧!

一、数字和趋势

看数字、看趋势是最基础展示数据信息的方式。在数据分析中,我们可以通过直观的数字或趋势图表,迅速了解例如市场的走势、订单的数量、业绩完成的情况等等,从而直观的吸收数据信息,有助于决策的准确性和实时性。

二、维度分解

当单一的数字或趋势过于宏观时,我们需要通过不同的维度对于数据进行分解,以获取更加精细的数据洞察。在选择维度时,需要仔细思考其对于分析结果的影响。

三、用户分群

针对符合某种特定行为或背景信息的用户,进行归类处理,是我们常常讲到的用户分群(segmentation)的手段。我们也可以通过提炼某一群用户的特定信息,创建该群体用户的画像。

在数据分析中,我们往往针对特定行为、特定背景的用户进行有针对性的用户运营和产品优化,效果会更加明显。

四、转化漏斗

绝大部分商业变现的流程,都可以归纳为漏斗。漏斗分析是我们最常见的数据分析手段之一,无论是注册转化漏斗,还是电商下单的漏斗。通过漏斗分析可以从先到后还原用户转化的路径,分析每一个转化节点的效率。

五、行为轨迹

关注行为轨迹,是为了真实了解用户行为。数据指标本身往往只是真实情况的抽象,例如,网站分析如果只看访问用户量(UV)和页面访问量(PV)这类指标,断然是无法全面理解用户如何使用你的产品。

六、留存分析

在人口红利逐渐消褪的时代,留住一个老用户的成本要远远低于获取一个新用户。每一款产品,每一项服务,都应该核心关注用户的留存,确保做实每一个客户。我们可以通过数据分析理解留存情况,也可以通过分析用户行为或行为组与回访之间的关联,找到提升留存的方法。

七、 A/B测试

A/B测试用来对比不同产品设计/算法对结果的影响。产品在上线过程中经常会使用A/B测试来测试不同产品或者功能设计的效果,市场和运营可以通过A/B测试来完成不同渠道、内容、广告创意的效果评估。

八、数学建模

当一个商业目标与多种行为、画像等信息有关联性时,我们通常会使用数学建模、数据挖掘的手段进行建模,预测该商业结果的产生。

关于数据分析的8种方法都是哪些,青藤小编就和您分享到这里了。如果您对大数据工程有浓厚的兴趣,希望这篇文章可以为您提供帮助。如果您还想了解更多关于数据分析师大数据工程师的技巧及素材等内容,可以点击本站的其他文章进行学习。

分享到: 编辑:方梦茹

就业培训申请领取
您的姓名
您的电话
意向课程
点击领取

环球青藤

官方QQ

扫描上方二维码或点击一键加群,免费领取大礼包,加群暗号:青藤。 一键加群

绑定手机号

应《中华人民共和国网络安全法》加强实名认证机制要求,同时为更加全面的体验产品服务,烦请您绑定手机号.

预约成功

本直播为付费学员的直播课节

请您购买课程后再预约

环球青藤移动课堂APP 直播、听课。职达未来!

安卓版

下载

iPhone版

下载
环球青藤官方微信服务平台

刷题看课 APP下载

免费直播 一键购课

代报名等人工服务

课程咨询 学员服务 公众号

扫描关注微信公众号

APP

扫描下载APP

返回顶部