数据挖掘助零售业二次起航
【摘要】数据挖掘助零售业二次起航随着同业竞争的日渐激烈,传统零售行业跨渠道竞争的手段与方式越来越丰富,同时企业自身的经营成本也在逐年推高,
数据挖掘助零售业二次起航
随着同业竞争的日渐激烈,传统零售行业跨渠道竞争的手段与方式越来越丰富,同时企业自身的经营成本也在逐年推高,在这一背景之下,企业越来越注重精细化运营管理。
精细化运营离不开对数据的分析解读以及深度挖掘,随着“大数据”的爆发,数据分析的观念也越来越深入人心。数据分析行业在中国已经走过十个年头,发展越来越快,不但有了行业组织,而且涌现出了一批专业的第三方数据分析服务机构,中颢润项目数据分析师事务所就是其中的佼佼者。我们立足于零售领域,总结了一些零售行业普遍存在的问题和一些解决思路的整体设计和解决方案的搭建。
一、供应链管理
供应链在零售行业有着举足轻重的地位,如何高效管理供应链成为零售企业控制成本、提高运营效率的最为直接有效的方式。
供应链比较经典的管理模型主要是ABC管理模型,在ABC管理模型之上,我们引入第三维度来细化管理方案,同时加入定时与定量两种库存订货模型,做成组合模型应用。
通过模型的组合应用,可以帮助企业解决资金占压与货品短缺的问题。
供应链的数据分析不仅包含供应商数据的分析,货品数据的分析,物流数据的分析,同时还应该包含企业内部其他的运营等支持活动的数据分析。
二、销售数据分析
1、销售数据常规分析
在我们服务于零售企业的过程中发现,大部分零售企业已经对日常经营数据进行了一些分析,其中包括日常的销售商品数据,如客单数、客单价、销售量、销售额以及供应商的一些数据。但目前这些数据的应用还局限于简单的描述性分析,并没有挖掘到更多的有价值的信息,对提高企业运营效率、产品销量和客户粘性的帮助有限。
2、商品数据分析
通过商品敏感分类表,能够区分不同商品的价格弹性或顾客对商品价格的敏感程度,从而为正确地选择促销产品类别和制定合理的促销方案(包括打折幅度)提供指导。
通过商品盈利分类表,能够区分不同商品的盈利性,准确分辨高盈利性商品、低盈利性商品,为制定合理的存货比率提供指导。
3、客户数据分析
(1)顾客忠诚计划
伴随着零售企业的迅猛发展,零售业的市场逐渐趋于饱和。受到土地等扩充成本的制约,依靠跑马圈地和打价格战很难超越竞争对手。加强日常管理,提高客户购物体验和客户忠诚度,成为零售企业的新出路。为此,零售企业需要回答以下问题:
ü如何通过商品的有效布局增加销售量?
ü如何评估促销活动效果?
ü如何提升顾客忠诚度?
以上问题可以通过客户细分加以解决。客户细分是指将一个大的消费群体划分为若干小的细分群体,其中同属于一个细分群的客户具有相似的消费特征。
客户细分可以使零售企业对不同细分群中的客户区别对待,提供差异化的服务,从而增加相应细分顾客群体的购买。典型的情况是利用“二八原则”,区分出那个只占顾客总人数20%,却为企业创造了80%销售额的群体,通过为这一群体提供差异化的服务,将增强企业盈利的稳定性和发展能力。
(2)关联分析与交叉销售
通过关联分析,我们可以对产品进行重新分类,把相互带动销售的产品在摆放时即分门别类,这种关联并非我们直观意义上的相关产品。而是需要大量数据进行分析,进而发现符合客户体验的关联产品。
交叉销售是指向老顾客销售新产品的过程。交叉销售能否成功,取决于对顾客需求和偏好的理解和把握,这些也可以通过数据分析来实现。
基于对顾客线上购买流程和交易行为的跟踪和研究,进行关联分析,从而为类似的用户形成有利的相关推荐。例如,根据用户购买量,对某类畅销产品排行,形成TOP10;再比如,当某用户购买了某产品后,提示该用户,购买过这个产品的顾客还买过哪些产品;此外,还可将用户购买行为与通过网站调查所挖掘出的用户喜好建立关联,对目标用户按其偏好开展相应的促销推广活动。
总之,零售企业由于积累了大量数据,可借助数据分析提高运营效率的环节很多。零售企业应该在常规统计分析的基础上,对现有数据进行更深入的挖掘和分析。中颢润项目数据分析师事务所长期与零售企业开展合作,在基础的数据分析基础之上,相应设计了一些灵敏的统计指标,挖掘出了数据的更深层次价值,使得零售企业的日常数据分析与把握更加轻松。
就业培训申请领取
环球青藤
官方QQ群扫描上方二维码或点击一键加群,免费领取大礼包,加群暗号:青藤。 一键加群
刷题看课 APP下载
免费直播 一键购课
代报名等人工服务
- 1 传统数据和大数据的区别
- 2 数据分析的8种方法都是哪些?
- 3 3大常用的数据分析工具是什么?
- 4 数据分析的具体流程是什么?
- 5 excel中的运算符
- 6 数据分析的作用有哪些?
- 7 电子商务需要分析哪些数据?
- 8 数据分析包括哪些内容?
- 9 rdd是什么?
- 10 数据分析的基本步骤