当前位置: 首页 > 数据分析师 > 数据分析师实战技能 > 数据分析师数据分析 > 数据挖掘中的经典算法

数据挖掘中的经典算法

发布时间:2020年09月28日 04:08:50 来源: 点击量:287

【摘要】 大家都知道,数据挖掘中有很多的算法,不同的算法有着不同的优势,它们在数据挖掘领域都产生了极为深远的影响。那么大家知道不知知道数据

大家都知道,数据挖掘中有很多的算法,不同的算法有着不同的优势,它们在数据挖掘领域都产生了极为深远的影响。那么大家知道不知知道数据挖掘中的经典算法都有哪些呢?在这篇文章中我们就给大家介绍数据挖掘中三个经典的算法,希望这篇文章能够更好的帮助大家。

1.K-Means算法

K-means algorithm算法是一个聚类算法,把n的对象根据他们的属性分为k个分割,k大于n。它与处理混合正态分布的最大期望算法很相似,因为他们都试图找到数据中自然聚类的中心。它假设对象属性来自于空间向量,并且目标是使各个群组内部的均方误差总和最小。这种算法在数据挖掘中是十分常见的算法。

2.支持向量机

而Support vector machines就是支持向量机,简称SV机(论文中一般简称SVM)。它是一种监督式学习的方法,这种方法广泛的应用于统计分类以及回归分析中。支持向量机将向量映射到一个更高维的空间里,在这个空间里建立有一个最大间隔超平面。在分开数据的超平面的两边建有两个互相平行的超平面。分隔超平面使两个平行超平面的距离最大化。假定平行超平面间的距离或差距越大,分类器的总误差越小。这些优点也就成就了这种算法。

3.C4.5算法

然后我们给大家说一下C4.5算法,C4.5算法是机器学习算法中的一种分类决策树算法,其核心算法是ID3算法. C4.5算法继承了ID3算法的优点,并对ID3算法进行了改进,这种改进具体体现在四个方面,第一就是在树构造过程中进行剪枝,第二就是能够完成对连续属性的离散化处理,第三就是用信息增益率来选择属性,克服了用信息增益选择属性时偏向选择取值多的属性的不足,第四就是能够对不完整数据进行处理。那么这种算法的优点是什么呢?优点就是产生的分类规则易于理解,准确率较高。其缺点是:在构造树的过程中,需要对数据集进行多次的顺序扫描和排序,因而导致算法的低效。

相信大家看了这篇文章以后对The k-means algorithm算法、Support vector machines、C4.5算法有了比较是深刻的了解,其实这三种算法那都是十分重要的算法,能够帮助数据挖掘解决更多的问题。大家在学习数据挖掘的时候一定要注意好这些问题。


分享到: 编辑:wangmin

就业培训申请领取
您的姓名
您的电话
意向课程
点击领取

环球青藤

官方QQ

扫描上方二维码或点击一键加群,免费领取大礼包,加群暗号:青藤。 一键加群

绑定手机号

应《中华人民共和国网络安全法》加强实名认证机制要求,同时为更加全面的体验产品服务,烦请您绑定手机号.

预约成功

本直播为付费学员的直播课节

请您购买课程后再预约

环球青藤移动课堂APP 直播、听课。职达未来!

安卓版

下载

iPhone版

下载
环球青藤官方微信服务平台

刷题看课 APP下载

免费直播 一键购课

代报名等人工服务

课程咨询 学员服务 公众号

扫描关注微信公众号

APP

扫描下载APP

返回顶部