当前位置: 首页 > 数据分析师 > 数据分析师实战技能 > 数据分析师数据分析 > 做数据挖掘失败的原因都有哪些?

做数据挖掘失败的原因都有哪些?

发布时间:2020年09月28日 05:17:46 来源: 点击量:314

【摘要】导致数据挖掘失败的原因有很多,我们只要稍加注意就能够及时止损,多加总结就能够更好的进行数据挖掘工作。但是导致数据挖掘失败的原因还有

导致数据挖掘失败的原因有很多,我们只要稍加注意就能够及时止损,多加总结就能够更好的进行数据挖掘工作。但是导致数据挖掘失败的原因还有一个,这个是极其隐秘的,那就是推广,很多人在推广过程中挖掘数据得到了失败的结果,那么到底是怎么回事呢?下面我们就为大家介绍一下这个原因。

因为推广导致数据挖掘失败,这让很多人无法理解,那么究竟是为什么呢?其实就是很多传统企业不同地域上的业务差异,不仅仅造成管理难度加大、体验不一致、系统过于复杂、运营成本高昂,也让模型的建设和推广异常困难。如果从模型本身的角度,不同地域的数据差异有时很大,在一个地方成功的模型,在另一个地方则完全失败,过拟合现象比比皆是。如果从业务理解的角度,建模团队要面对几个甚至十多个做类似业务的团队,各个团队的业务理解上的差异和对于建模的要求各不相同,造成了建模团队的无所适从。从而使得数据挖掘工作难以进展下去。

当然,数据挖掘需要注意的是模型的推广,数据模型的推广成为了建模团队巨大的负担,复制模型,往往变成了重做模型,搜集结果数据也难上加难,数据挖掘,已经不是一项纯粹的工作,我们在前面说的五点原因都是为了说明数据挖掘所以难,是综合多种因素的结果,可能不是靠建立一个平台,懂得一些算法,掌握一个工具就能简单解决的,往往具有更深层次的原因。这就需要我们在掌握好工具使用的同时,也要抬起头来,更全面的看待数据挖掘这个事情,因地制宜的制定适合自己企业特点的数据挖掘机制和流程。所以在大数据时代的到来之际,我们必须让平台,工具和算法也变得越加重要,这对数据建模师的知识结构也带来了新的冲击。但是新的挑战一般带来的是新的机遇。

相信大家现在已经了解了推广问题是如何导致数据挖掘失败了吧?其实我们不难发现数据挖掘失败的原因都是我们一般容易忽视的地方,所以我们在做数据挖掘工作的时候不能掉以轻心,我们只有解决了这些问题才能够让数据挖掘工作做得更加出色。

分享到: 编辑:wangmin

就业培训申请领取
您的姓名
您的电话
意向课程
点击领取

环球青藤

官方QQ

扫描上方二维码或点击一键加群,免费领取大礼包,加群暗号:青藤。 一键加群

绑定手机号

应《中华人民共和国网络安全法》加强实名认证机制要求,同时为更加全面的体验产品服务,烦请您绑定手机号.

预约成功

本直播为付费学员的直播课节

请您购买课程后再预约

环球青藤移动课堂APP 直播、听课。职达未来!

安卓版

下载

iPhone版

下载
环球青藤官方微信服务平台

刷题看课 APP下载

免费直播 一键购课

代报名等人工服务

课程咨询 学员服务 公众号

扫描关注微信公众号

APP

扫描下载APP

返回顶部