当前位置: 首页 > 数据分析师 > 数据分析师行业资讯 > 数据分析师热门资讯 > 数据分析的五大乱象有哪些?

数据分析的五大乱象有哪些?

发布时间:2020年10月28日 02:20:51 来源:环球青藤 点击量:920

【摘要】数据营销时代,越来越多人开始接受用数据指导广告投放。但很多人并不知道,数据可以指导投放的前提是数据分析师 广告优化师能够正确的解读数据。同样的数据,通过不同方式的解读,给投放带来的指导作用天差地别。那么,数据分析的五大乱象有哪些呢?今天就跟随小编一起来了解下吧!

乱象一:数据本身造假

最常见也是最初级的耍流氓行为就是数据造假。

比如,为了让广告主对投放工作表示满意,或者说服广告主继续投放广告,投放方会在结案报告里对数据做一些处理,从曝光量到点击量到点击率都做一遍美化,让广告主觉得这钱花得挺值,甚至愿意继续投。

乱象二:指标定义不一

指标是说明总体数量特征的概念。很多公司都有自己的投放KPI指标体系,简单来说就是通过几个关键指标来衡量公司广告投放情况的好坏,比如点击率、曝光量、转化率、下载量、ROI 等,都是信息流广告的考核指标之一。

通常情况下,指标需要在一定的前提条件下进行汇总计算才能得出,诸如时间、地点、范围等都可以作为指标统计的前提条件,也就是我们常说的统计口径与范围。

乱象三:隐藏关键信息

这种情况通常出现在别人想要说服你接受某个指标的时候。

比如公司管理层要给广告投放定一个KPI指标,号称Bench marking (标杆管理)的方法开始被用起来。

Bench marking(标杆管理),又称“基准管理”,其本质是不断寻找最佳实践,以此为基准不断地“测量分析与持续改进”。

乱象四:乱搞因果关系

单纯认为最终的购买决策是由问价直接导致的是有问题的,归根结底,价格只是客户满意的一个部分,还有更多的的原因导致最后的成交,我们需要了解影响目标客户做决策的各个相关因素,针对性的去做创意。

乱象五:以局部论整体

我们说因变量的影响因素其实有很多,但分析师往往只看到其中一两个,就草率的认为因变量的变化就是某个或者某几个变量的变化造成的,通常来说,由这个做法得出的结论都是片面的。

比如在信息流广告投放中,经常会有朋友吐槽XX渠道效果好差,不如XX平台,刚上线就有咨询。撇除平台本身的一些差别,我们从广告投放规律来看这个问题,你会发现,效果好坏的评估需要考虑多个因素。

关于数据分析的五大乱象有哪些,青藤小编就和您分享到这里了。如果您对大数据工程有浓厚的兴趣,希望这篇文章可以为您提供帮助。如果您还想了解更多关于数据分析师大数据工程师的技巧及素材等内容,可以点击本站的其他文章进行学习。

分享到: 编辑:方梦茹

就业培训申请领取
您的姓名
您的电话
意向课程
点击领取

环球青藤

官方QQ

扫描上方二维码或点击一键加群,免费领取大礼包,加群暗号:青藤。 一键加群

绑定手机号

应《中华人民共和国网络安全法》加强实名认证机制要求,同时为更加全面的体验产品服务,烦请您绑定手机号.

预约成功

本直播为付费学员的直播课节

请您购买课程后再预约

环球青藤移动课堂APP 直播、听课。职达未来!

安卓版

下载

iPhone版

下载
环球青藤官方微信服务平台

刷题看课 APP下载

免费直播 一键购课

代报名等人工服务

课程咨询 学员服务 公众号

扫描关注微信公众号

APP

扫描下载APP

返回顶部