数据挖掘主要解决的四类问题
【摘要】数据挖掘主要解决的四类问题,数据挖掘非常清晰的界定了它所能解决的几类问题。这是一个高度的归纳,数据挖掘的应用就是把这几类问题演绎的一个过程。那么今天,小编将带领大家了解下这四类问题的具体内容,感兴趣的小伙伴快来学习下吧!
1、分类问题
分类问题属于预测性的问题,但是它跟普通预测问题的区别在于其预测的结果是类别(如A、B、C三类)而不是一个具体的数值(如55、65、75……)。
举个例子,你和朋友在路上走着,迎面走来一个人,你对朋友说:我猜这个人是个上海人,那么这个问题就属于分类问题;如果你对朋友说:我猜这个人的年龄在30岁左右,那么这个问题就属于后面要说到的预测问题。
2、聚类问题
聚类问题不属于预测性的问题,它主要解决的是把一群对象划分成若干个组的问题。划分的依据是聚类问题的核心。所谓“物以类聚,人以群分”,故得名聚类。
聚类问题容易与分类问题混淆,主要是语言表达的原因,因为我们常说这样的话:“根据客户的消费行为,我们把客户分成三个类,第一个类的主要特征是……”,实际上这是一个聚类问题,但是在表达上容易让我们误解为这是个分类问题。
3、关联问题
说起关联问题,可能要从“啤酒和尿布”说起了。有人说啤酒和尿布是沃尔玛超市的一个经典案例,也有人说,是为了宣传数据挖掘/数据仓库而编造出来的虚构的“托”。不管如何,“啤酒和尿布”给了我们一个启示:世界上的万事万物都有着千丝万缕的联系,我们要善于发现这种关联。
4、预测问题
此处说的预测问题指的是狭义的预测,并不包含前面阐述的分类问题,因为分类问题也属于预测。一般来说我们谈预测问题主要指预测变量的取值为连续数值型的情况。
例如天气预报预测明天的气温、国家预测下一年度的GDP增长率、电信运营商预测下一年的收入、用户数等。
关于数据挖掘主要解决的四类问题,青藤小编就和您分享到这里了。如果您对大数据工程有浓厚的兴趣,希望这篇文章可以为您提供帮助。如果您还想了解更多关于数据分析师、大数据工程师的技巧及素材等内容,可以点击本站的其他文章进行学习。
就业培训申请领取
环球青藤
官方QQ群扫描上方二维码或点击一键加群,免费领取大礼包,加群暗号:青藤。 一键加群
刷题看课 APP下载
免费直播 一键购课
代报名等人工服务