做设计也要看数据?
【摘要】做设计也要看数据?!大数据贯穿设计师全局大数据在大家眼里,往往和科技、互联网等结合在一起,而设计被大部分人认为只是一种艺术相关的学
做设计也要看数据?!大数据贯穿设计师全局
大数据在大家眼里,往往和科技、互联网等结合在一起,而设计被大部分人认为只是一种艺术相关的学科。他们的眼里,大数据除了可视化方面能和设计搭上点儿关系,还有什么呢?很多设计师从来不看数据,要么是因为没有数据可看,要么是根本不想看,但是也一样把设计做的很好啊!设计本来就是有感性的一面,为什么非得要和数据扯上关系呢?
我们不妨先看看,设计的本质是什么。
设计不同于纯粹的艺术,艺术源于艺术家对现实的观察和思考,以及对这种观察和思考的自我表达;设计天生就是为别人在做事情,纵然同样需要观察和思考,但是这种观察和思考不是为了表现设计师的自我,而是为了更好地服务于某个用户群,因而设计师了解用户就变得非常重要。尤其是要了解用户的目标、行为、态度等相关的情况,我们这里说的数据其实也就是对用户的目标、行为、态度等情况的量化,因此,通过对这些数据的分析,我们可以更好地挖掘用户的需求,进而为用户提供更好地体验。
简单点说,设计是服务于用户的,了解用户才能更好地做设计,数据是了解用户的一种途径。
因此,大数据就体现出了它的作用:
设计前:数据帮你发现问题。
所有设计开始之前的研究和分析,都是为了更明确用户的需求,明确为什么要做这个设计。从业务的角度来看,这个产品对公司有何价值,此次设计要达到什么目的;从用户的角度来看,这个产品对用户有何价值,此次设计要为用户解决什么问题;在了解业务诉求和用户诉求的过程中,我们难免要用到数据,这个阶段,数据的作用就是为了“发现问题”,看看设计可以解决什么问题,从而更佳明确设计的目标。
当然具体的工作中,多数设计师都比较纠结,既要考虑业务诉求,又要考虑用户诉求,如果这两者不能完全匹配的时候,我们该怎么办,是两者的相加吗?还是我们就只考虑用户诉求,对业务诉求看看。我个人的理解是,现实工作中我们都不是在追求最完美的设计,更多的是在做平衡,如果是一个用户型的产品,比如偏向于为用户提供某个功能的平台,本身就是完全从用户的角度出发,通过为用户提供功能帮助用户解决问题的,应该向用户诉求靠拢多一些;如果是一个商业型的产品,比如偏向于为用户提供某些内容的平台,那么在为用户提供主动查找的入口的同时,可以适度的向着业务发展需求倾斜,做适度的业务层面的引导;当然这个也不是绝对的,往往同一个平台,同一个产品,在不同的发展阶段也有不同的需求,如果是一个全新的产品,业务的生存就变得格外重要,这个时候设计应该多一些考虑业务诉求,先帮助业务生存,否则,这个产品都要挂了,还怎么为用户提供服务呢?
当然,好的设计师总是能在业务和用户之间找到巧妙的平衡,找到二者的交集,举个例子,假如这个产品这个阶段就是要做用户规模,而用户诉求是享受个性化的服务,看似完全不关的两个诉求,实际上我们完全可以通过更好的个性化服务提升用户满意度,获得好的用户口碑,再间接地借助用户口碑提升产品的用户规模,这二者之间并不是完全的不相干,更多的时候看能否找到他们的关联性,抓住阶段性的设计目标。
设计中:数据帮你判断思路。
因为设计师的个人经验不同,创造性思维不同,因此不同的设计师面对同一个问题,解决方案也很可能差别较大,即便是同一个设计师也会想到不同的解决方案,到底哪个方案更合适,有些情况下数据可以给你参考意见,为你提供“判断思路”,协助你做决策;条条大路通罗马,但是哪一条路才是当前最合适的呢?很多大数据相关分析工具可以帮助此类决策。大数据魔镜等新型优质的大数据分析工具为设计决策提供了无限可能。
通过一个具体的例子看看,如何利用数据来判断思路?有一个批发类的电商网站的频道首页,我们发现用户的转化率很低,就去研究了数据,然后结合了对典型用户做的用户访谈的结论,最后发现转化率底的原因其实很简单,这个频道的首页入口主要是来源于整个网站的首页,而整个网站的首页是一个全行业品类的页面,用户如果是女装行业的买家,她从一个全品类的首页点击一个链接进入另一个全品类的页面,再艰难的找到女装这个类目,再点击进入List页面查看商品,这个路径是非常深的,那么怎么解决这个问题呢?那就是要避免做女装的用户从网站首页进入这个频道之后还要再次选择女装类目,才能看到女装的商品!
解决这个问题的思路有哪些?可以在网站首页增加入口,让用户直接点击女装类目进入频道首页,给用户展示女装商品;可以在用户进入频道首页之后,根据行业偏好的个性化数据来推荐商品,推荐的不准确,用户也可以去定制;到底哪个更靠谱?两个思路各有利弊,鉴于前一个思路需要有外部依赖,要改动网站首页,所以我们内心都很期望后一个思路能跑通,但是怎么知道这个思路行不行?首先我们需要知道行业的个性化推荐能覆盖多大的人群,又有多少的人愿意去定制行业偏好?
对于普通的网站来说这个可能是一个不够明确的问题,但是这个网站是一个会员用户早就过亿的B类电商网站,有着如此庞大的用户规模,较高的用户覆盖率,这就意味着对用户行为数据的积累,再者B类的用户有一个显著地特征就是在一个较长的时间里,行业的偏好相对比较稳定,如果是一个主营女装的买家,那么她的偏好一般会以女装为主,不会超出服装的范围,最多会有少量的服装周边配套的采购。
设计后:数据帮你验证方案。
我们的设计方案到底做的好不好呢?衡量标准就是看设计方案是否能够达成设计目标?这也需要数据来量化,通常会用GSM的模型来支撑设计的验证。G(Goal)设计目标、S(Signal)现象信号、M(Metric)衡量指标,所谓的设计目标,就是要确定设计要达成什么结果,要解决什么问题;衡量指标,我们不能凭空猜想,必须建立在设计目标的基础上,先假设设计目标会实现,那么会出现什么现象或信号呢?列举出所有的现象或信号,选择我们可以监控的到的,然后对这个现象或信号产品进行量化,自然就得到了衡量指标,但是指标的波动幅度往往要依赖经验来定。
比如说,某个产品的设计目标是通过设计的引导,让更多的买家产生购买,想象一下,如果设计目标实现了,会有什么现象呢?可能会有更多的人有购买意愿,看了商品详情页,点击了购买按钮等等,最终也产生了购买,那么,衡量指标是哪个?设计只是改变了商品信息的呈现方式,并不能改变商品本身的质量或背后的服务,所以我们应该重点考察设计是否强化了引导,提升了购买意愿,是否激发了用户进一步了解的行为,主要是指浏览行为,最典型的就是到达了商品列表页或者商品详情页等,量化的结果就是看又进一步行为的用户的比例。
就业培训申请领取
环球青藤
官方QQ群扫描上方二维码或点击一键加群,免费领取大礼包,加群暗号:青藤。 一键加群
数据分析师相关文章推荐
|数据分析师最新文章推荐
刷题看课 APP下载
免费直播 一键购课
代报名等人工服务
- 1 传统数据和大数据的区别
- 2 数据分析的8种方法都是哪些?
- 3 数据分析的具体流程是什么?
- 4 3大常用的数据分析工具是什么?
- 5 excel中的运算符
- 6 数据分析的作用有哪些?
- 7 电子商务需要分析哪些数据?
- 8 数据分析包括哪些内容?
- 9 数据分析的基本步骤
- 10 rdd是什么?