当前位置: 首页 > 数据分析师 > 数据分析师实战技能 > 数据分析师数据分析 > 文本主题模型之潜在语义索引(LSI)

文本主题模型之潜在语义索引(LSI)

发布时间:2020年09月29日 02:33:56 来源: 点击量:477

【摘要】文本主题模型之潜在语义索引(LSI)在文本挖掘中,主题模型是比较特殊的一块,它的思想不同于我们常用的机器学习算法,因此这里我们需要专门

文本主题模型之潜在语义索引(LSI)

在文本挖掘中,主题模型是比较特殊的一块,它的思想不同于我们常用的机器学习算法,因此这里我们需要专门来总结文本主题模型的算法。本文关注于潜在语义索引算法(LSI)的原理。

1. 文本主题模型的问题特点

在数据分析中,我们经常会进行非监督学习的聚类算法,它可以对我们的特征数据进行非监督的聚类。而主题模型也是非监督的算法,目的是得到文本按照主题的概率分布。从这个方面来说,主题模型和普通的聚类算法非常的类似。但是两者其实还是有区别的。

聚类算法关注于从样本特征的相似度方面将数据聚类。比如通过数据样本之间的欧式距离,曼哈顿距离的大小聚类等。而主题模型,顾名思义,就是对文字中隐含主题的一种建模方法。比如从“人民的名义”和“达康书记”这两个词我们很容易发现对应的文本有很大的主题相关度,但是如果通过词特征来聚类的话则很难找出,因为聚类方法不能考虑到到隐含的主题这一块。

那么如何找到隐含的主题呢?这个一个大问题。常用的方法一般都是基于统计学的生成方法。即假设以一定的概率选择了一个主题,然后以一定的概率选择当前主题的词。最后这些词组成了我们当前的文本。所有词的统计概率分布可以从语料库获得,具体如何以“一定的概率选择”,这就是各种具体的主题模型算法的任务了。

当然还有一些不是基于统计的方法,比如我们下面讲到的LSI。

2. 潜在语义索引(LSI)概述

潜在语义索引(Latent Semantic Indexing,以下简称LSI),有的文章也叫Latent Semantic  Analysis(LSA)。其实是一个东西,后面我们统称LSI,它是一种简单实用的主题模型。LSI是基于奇异值分解(SVD)的方法来得到文本的主题的。而SVD及其应用我们在前面的文章也多次讲到,比如:奇异值分解(SVD)原理与在降维中的应用和矩阵分解在协同过滤推荐算法中的应用。如果大家对SVD还不熟悉,建议复习奇异值分解(SVD)原理与在降维中的应用后再读下面的内容。

这里我们简要回顾下SVD:对于一个m×n的矩阵A,可以分解为下面三个矩阵:

Am×n=Um×mΣm×nVn×nT

有时为了降低矩阵的维度到k,SVD的分解可以近似的写为:

Am×n≈Um×kΣk×kVk×nT

如果把上式用到我们的主题模型,则SVD可以这样解释:我们输入的有m个文本,每个文本有n个词。而Aij则对应第i个文本的第j个词的特征值,这里最常用的是基于预处理后的标准化TF-IDF值。k是我们假设的主题数,一般要比文本数少。SVD分解后,Uil对应第i个文本和第l个主题的相关度。Vjm对应第j个词和第m个词义的相关度。Σlm对应第l个主题和第m个词义的相关度。

也可以反过来解释:我们输入的有m个词,对应n个文本。而Aij则对应第i个词档的第j个文本的特征值,这里最常用的是基于预处理后的标准化TF-IDF值。k是我们假设的主题数,一般要比文本数少。SVD分解后,Uil对应第i个词和第l个词义的相关度。Vjm对应第j个文本和第m个主题的相关度。Σlm对应第l个词义和第m个主题的相关度。

这样我们通过一次SVD,就可以得到文档和主题的相关度,词和词义的相关度以及词义和主题的相关度。

3. LSI简单实例

这里举一个简单的LSI实例,假设我们有下面这个有10个词三个文本的词频TF对应矩阵如下:

这里我们没有使用预处理,也没有使用TF-IDF,在实际应用中最好使用预处理后的TF-IDF值矩阵作为输入。

我们假定对应的主题数为2,则通过SVD降维后得到的三矩阵为:

从矩阵Uk我们可以看到词和词义之间的相关性。而从Vk可以看到3个文本和两个主题的相关性。大家可以看到里面有负数,所以这样得到的相关度比较难解释。

4. LSI用于文本相似度计算

在上面我们通过LSI得到的文本主题矩阵可以用于文本相似度计算。而计算方法一般是通过余弦相似度。比如对于上面的三文档两主题的例子。我们可以计算第一个文本和第二个文本的余弦相似度如下 :

sim(d1,d2)=(?0.4945)?(?0.6458)+(0.6492)?(?0.7194)(?0.4945)2+0.64922(?0.6458)2+(?0.7194)2

5. LSI主题模型总结

LSI是最早出现的主题模型了,它的算法原理很简单,一次奇异值分解就可以得到主题模型,同时解决词义的问题,非常漂亮。但是LSI有很多不足,导致它在当前实际的主题模型中已基本不再使用。

主要的问题有:

1) SVD计算非常的耗时,尤其是我们的文本处理,词和文本数都是非常大的,对于这样的高维度矩阵做奇异值分解是非常难的。

2) 主题值的选取对结果的影响非常大,很难选择合适的k值。

3) LSI得到的不是一个概率模型,缺乏统计基础,结果难以直观的解释。

对于问题1),主题模型非负矩阵分解(NMF)可以解决矩阵分解的速度问题。对于问题2),这是老大难了,大部分主题模型的主题的个数选取一般都是凭经验的,较新的层次狄利克雷过程(HDP)可以自动选择主题个数。对于问题3),牛人们整出了pLSI(也叫pLSA)和隐含狄利克雷分布(LDA)这类基于概率分布的主题模型来替代基于矩阵分解的主题模型。

回到LSI本身,对于一些规模较小的问题,如果想快速粗粒度的找出一些主题分布的关系,则LSI是比较好的一个选择,其他时候,如果你需要使用主题模型,推荐使用LDA和HDP。

分享到: 编辑:wangmin

就业培训申请领取
您的姓名
您的电话
意向课程
点击领取

环球青藤

官方QQ

扫描上方二维码或点击一键加群,免费领取大礼包,加群暗号:青藤。 一键加群

绑定手机号

应《中华人民共和国网络安全法》加强实名认证机制要求,同时为更加全面的体验产品服务,烦请您绑定手机号.

预约成功

本直播为付费学员的直播课节

请您购买课程后再预约

环球青藤移动课堂APP 直播、听课。职达未来!

安卓版

下载

iPhone版

下载
环球青藤官方微信服务平台

刷题看课 APP下载

免费直播 一键购课

代报名等人工服务

课程咨询 学员服务 公众号

扫描关注微信公众号

APP

扫描下载APP

返回顶部