常见的数据分析模型有哪些?
【摘要】在进行数据分析时,那就会提及数据分析模型。在进行数据分析之前,首先要建立一个数据分析模型。根据模型的内容,将其细分为不同的数据指标以进行详细分析,最后得到所需的分析结果以及分析结论。那么,常见的数据分析模型有哪些呢?
1.行为事件分析
行为事件分析方法,研究某种行为事件对企业组织价值的影响程度。公司通过研究与事件发生有关的所有因素来挖掘或跟踪用户行为事件背后的原因,公司可以使用它来跟踪或记录用户行为或业务流程,例如用户注册,浏览产品详细信息页面,成功的投资,现金提取等交互影响。
2.漏斗分析模型
漏斗分析是一组过程分析,可以科学地反映用户的行为以及从头到尾的用户转化率的重要分析模型。
漏斗分析模型已广泛用于日常数据操作,例如流量监控和产品目标转化。例如,在产品服务平台中,实时用户从激活APP到支出开始,一般用户的购物路径是激活APP,注册帐户,进入实时空间,交互行为和礼物支出。
3.留存分析模型
留存分析是一种分析模型,用于分析用户的参与/活动级别,调查执行初始行为的用户执行后续行为的数量。这是衡量产品对用户价值的重要方法。保留率分析可以帮助回答以下问题:
新客户是否完成了您对用户将来要做行为的期望?如付款单等;社交产品可以改善对新注册用户的指导流程,并希望提高注册后用户的参与度,如何进行验证?我想确定产品变更是否有效。
4.分布分析模型
分布分析是在特定指标下对用户的频率和总量进行分类显示。它可以显示单个用户对产品的依赖程度,分析不同地区和不同时间段内客户购买的不同类型产品的数量,购买频率等,以帮助运营商了解当前客户状态和客户运营情况。
5.点击分析模型
用一种特殊的突出显示颜色形式用于显示页面或页面组区域(具有相同结构的页面,例如产品详细信息页面,官方网站博客等)中不同元素的点击密度的图表。包括元素被单击的次数,比例,被单击的用户列表以及按钮的当前和历史内容等因素。
关于常见的数据分析模型有哪些,青藤小编就和您分享到这里了。如果你对大数据工程有浓厚的兴趣,希望这篇文章能够对你有所帮助。如果您还想了解更多数据分析师、大数据工程师的技巧及素材等内容,可以点击本站的其他文章进行学习。
就业培训申请领取
环球青藤
官方QQ群扫描上方二维码或点击一键加群,免费领取大礼包,加群暗号:青藤。 一键加群
数据分析师相关文章推荐
|数据分析师最新文章推荐
刷题看课 APP下载
免费直播 一键购课
代报名等人工服务
- 1 传统数据和大数据的区别
- 2 数据分析的8种方法都是哪些?
- 3 3大常用的数据分析工具是什么?
- 4 数据分析的具体流程是什么?
- 5 excel中的运算符
- 6 数据分析的作用有哪些?
- 7 电子商务需要分析哪些数据?
- 8 数据分析包括哪些内容?
- 9 rdd是什么?
- 10 数据分析的基本步骤