当前位置: 首页 > 数据分析师 > 数据分析师实战技能 > 数据分析师数据分析 > 机器学习之——多类分类问题

机器学习之——多类分类问题

发布时间:2020年09月28日 10:39:23 来源: 点击量:421

【摘要】机器学习之——多类分类问题在之前,我们讨论了逻辑回归模型(Logistic Regression)解决分类问题。但是我们发现,逻辑回归模型解决的是二分

机器学习之——多类分类问题

在之前,我们讨论了逻辑回归模型(Logistic Regression)解决分类问题。但是我们发现,逻辑回归模型解决的是二分问题,即:模型的结果只有两个值,y=0 or y=1 。但是在现实情境下,我们的训练集往往包含多个类(>2),我们就无法用一个二元变量(y=0|y=1)来做判断依据了。举个例子,我们预测天气,天气的情况就分为:晴天、阴天、雨天、多云、雪天、雾天等等。

下面是一个多类分类问题(Multiclass Classification)可能的情况:

三个不同的形状,表示三种不同的分类。

一种解决这类问题的途径,是采用一对多(One-vs-All)方法。在一对多方法中,我们将多类分类问题转变成二元分类问题。为了能实现这样的转变,我们将多个类中的一个类标记为正向类(y=1),然后将其他所有的类都标记成负向类(y=0),这个模型记作:

接着,相同的,我们选择另外一个类标记为正向类(y=2),再将其他的类都标记为负向类,将这个模型记作:

以此类推。

最后,我们得到一系列的模型,简记为:

其中 i = 1,2,3,...,k

步骤可以记作下图:

最后,在我们需要做预测时,我们将所有的分类机都运行一遍,然后对于每一个输入变量,都选择最高可能性的输出变量。

这便是解决多类分类问题的一对多方法。

分享到: 编辑:wangmin

就业培训申请领取
您的姓名
您的电话
意向课程
点击领取

环球青藤

官方QQ

扫描上方二维码或点击一键加群,免费领取大礼包,加群暗号:青藤。 一键加群

绑定手机号

应《中华人民共和国网络安全法》加强实名认证机制要求,同时为更加全面的体验产品服务,烦请您绑定手机号.

预约成功

本直播为付费学员的直播课节

请您购买课程后再预约

环球青藤移动课堂APP 直播、听课。职达未来!

安卓版

下载

iPhone版

下载
环球青藤官方微信服务平台

刷题看课 APP下载

免费直播 一键购课

代报名等人工服务

课程咨询 学员服务 公众号

扫描关注微信公众号

APP

扫描下载APP

返回顶部