Python语言下的机器学习库
【摘要】Python语言下的机器学习库Python是最好的编程语言之一,在科学计算中用途广泛:计算机视觉、人工智能、数学、天文等。它同样适用于机器学习
Python语言下的机器学习库
Python是最好的编程语言之一,在科学计算中用途广泛:计算机视觉、人工智能、数学、天文等。它同样适用于机器学习也是意料之中的事。当然,它也有些缺点;其中一个是工具和库过于分散。如果你是拥有unix思维(unix-minded)的人,你会觉得每个工具只做一件事并且把它做好是非常方便的。但是你也需要知道不同库和工具的优缺点,这样在构建系统时才能做出合理的决策。工具本身不能改善系统或产品,但是使用正确的工具,我们可以工作得更高效,生产率更高。因此了解正确的工具,对你的工作领域是非常重要的。
这篇文章的目的就是列举并描述Python可用的最有用的机器学习工具和库。这个列表中,我们不要求这些库是用Python写的,只要有Python接口就够了。我们在最后也有一小节关于深度学习(Deep Learning)的内容,因为它最近也吸引了相当多的关注。
我们的目的不是列出Python中所有机器学习库(搜索“机器学习”时Python包索引(PyPI)返回了139个结果),而是列出我们所知的有用并且维护良好的那些。另外,尽管有些模块可以用于多种机器学习任务,我们只列出主要焦点在机器学习的库。比如,虽然Scipy包含一些聚类算法,但是它的主焦点不是机器学习而是全面的科学计算工具集。因此我们排除了Scipy(尽管我们也使用它!)。
另一个需要提到的是,我们同样会根据与其他科学计算库的集成效果来评估这些库,因为机器学习(有监督的或者无监督的)也是数据处理系统的一部分。如果你使用的库与数据处理系统其他的库不相配,你就要花大量时间创建不同库之间的中间层。在工具集中有个很棒的库很重要,但这个库能与其他库良好集成也同样重要。
如果你擅长其他语言,但也想使用Python包,我们也简单地描述如何与Python进行集成来使用这篇文章列出的库。
Scikit-LearnScikit Learn是我们在CB Insights选用的机器学习工具。我们用它进行分类、特征选择、特征提取和聚集。我们最爱的一点是它拥有易用的一致性API,并提供了很多开箱可用的求值、诊断和交叉验证方法(是不是听起来很熟悉?Python也提供了“电池已备(译注:指开箱可用)”的方法)。锦上添花的是它底层使用Scipy数据结构,与Python中其余使用Scipy、Numpy、Pandas和Matplotlib进行科学计算的部分适应地很好。因此,如果你想可视化分类器的性能(比如,使用精确率与反馈率(precision-recall)图表,或者接收者操作特征(Receiver Operating Characteristics,ROC)曲线),Matplotlib可以帮助进行快速可视化。考虑到花在清理和构造数据的时间,使用这个库会非常方便,因为它可以紧密集成到其他科学计算包上。
另外,它还包含有限的自然语言处理特征提取能力,以及词袋(bag of words)、tfidf(Term Frequency Inverse Document Frequency算法)、预处理(停用词/stop-words,自定义预处理,分析器)。此外,如果你想快速对小数据集(toy dataset)进行不同基准测试的话,它自带的数据集模块提供了常见和有用的数据集。你还可以根据这些数据集创建自己的小数据集,这样在将模型应用到真实世界中之前,你可以按照自己的目的来检验模型是否符合期望。对参数最优化和参数调整,它也提供了网格搜索和随机搜索。如果没有强大的社区支持,或者维护得不好,这些特性都不可能实现。我们期盼它的第一个稳定发布版。
StatsmodelsStatsmodels是另一个聚焦在统计模型上的强大的库,主要用于预测性和探索性分析。如果你想拟合线性模型、进行统计分析,或者预测性建模,那么Statsmodels非常适合。它提供的统计测试相当全面,覆盖了大部分情况的验证任务。如果你是R或者S的用户,它也提供了某些统计模型的R语法。它的模型同时也接受Numpy数组和Pandas数据帧,让中间数据结构成为过去!
PyMCPyMC是做贝叶斯曲线的工具。它包含贝叶斯模型、统计分布和模型收敛的诊断工具,也包含一些层次模型。如果想进行贝叶斯分析,你应该看看。
ShogunShogun是个聚焦在支持向量机(Support Vector Machines, SVM)上的机器学习工具箱,用C++编写。它正处于积极开发和维护中,提供了Python接口,也是文档化最好的接口。但是,相对于Scikit-learn,我们发现它的API比较难用。而且,也没提供很多开箱可用的诊断和求值算法。但是,速度是个很大的优势。
GensimGensim被定义为“人们的主题建模工具(topic modeling for humans)”。它的主页上描述,其焦点是狄利克雷划分(Latent Dirichlet Allocation, LDA)及变体。不同于其他包,它支持自然语言处理,能将NLP和其他机器学习算法更容易组合在一起。如果你的领域在NLP,并想进行聚集和基本的分类,你可以看看。目前,它们引入了Google的基于递归神经网络(Recurrent Neural Network)的文本表示法word2vec。这个库只使用Python编写。
OrangeOrange是这篇文章列举的所有库中唯一带有图形用户界面(Graphical User Interface,GUI)的。对分类、聚集和特征选择方法而言,它是相当全面的,还有些交叉验证的方法。在某些方面比Scikit-learn还要好(分类方法、一些预处理能力),但与其他科学计算系统(Numpy, Scipy, Matplotlib, Pandas)的适配上比不上Scikit-learn。但是,包含GUI是个很重要的优势。你可以可视化交叉验证的结果、模型和特征选择方法(某些功能需要安装Graphviz)。对大多数算法,Orange都有自己的数据结构,所以你需要将数据包装成Orange兼容的数据结构,这使得其学习曲线更陡。
PyMVPAPyMVPA是另一个统计学习库,API上与Scikit-learn很像。包含交叉验证和诊断工具,但是没有Scikit-learn全面。
深度学习尽管深度学习是机器学习的一个子节,我们在这里创建单独一节的原因是,它最新吸引了Google和Facebook人才招聘部门的很多注意。
TheanoTheano是最成熟的深度学习库。它提供了不错的数据结构(张量,tensor)来表示神经网络的层,对线性代数来说很高效,与Numpy的数组类似。需要注意的是,它的API可能不是很直观,用户的学习曲线会很高。有很多基于Theano的库都在利用其数据结构。它同时支持开箱可用的GPU编程。
PyLearn2还有另外一个基于Theano的库,PyLearn2,它给Theano引入了模块化和可配置性,你可以通过不同的配置文件来创建神经网络,这样尝试不同的参数会更容易。可以说,如果分离神经网络的参数和属性到配置文件,它的模块化能力更强大。
DecafDecaf是最近由UC Berkeley发布的深度学习库,在Imagenet分类挑战中测试发现,其神经网络实现是很先进的(state of art)。
Nolearn如果你想在深度学习中也能使用优秀的Scikit-learn库API,封装了Decaf的Nolearn会让你能够更轻松地使用它。它是对Decaf的包装,与Scikit-learn兼容(大部分),使得Decaf更不可思议。
OverFeatOverFeat是最近猫vs.狗(kaggle挑战)的胜利者,它使用C++编写,也包含一个Python包装器(还有Matlab和Lua)。通过Torch库使用GPU,所以速度很快。也赢得了ImageNet分类的检测和本地化挑战。如果你的领域是计算机视觉,你可能需要看看。
HebelHebel是另一个带有GPU支持的神经网络库,开箱可用。你可以通过YAML文件(与Pylearn2类似)决定神经网络的属性,提供了将神级网络和代码友好分离的方式,可以快速地运行模型。由于开发不久,就深度和广度上说,文档很匮乏。就神经网络模型来说,也是有局限的,因为只支持一种神经网络模型(正向反馈,feed-forward)。但是,它是用纯Python编写,将会是很友好的库,因为包含很多实用函数,比如调度器和监视器,其他库中我们并没有发现这些功能。
NeurolabNeuroLab是另一个API友好(与Matlabapi类似)的神经网络库。与其他库不同,它包含递归神经网络(Recurrent Neural Network,RNN)实现的不同变体。如果你想使用RNN,这个库是同类API中最好的选择之一。
与其他语言集成你不了解Python但是很擅长其他语言?不要绝望!Python(还有其他)的一个强项就是它是一个完美的胶水语言,你可以使用自己常用的编程语言,通过Python来访问这些库。以下适合各种编程语言的包可以用于将其他语言与Python组合到一起:R -> RPythonMatlab -> matpythonJava -> JythonLua -> Lunatic PythonJulia -> PyCall.jl
不活跃的库这些库超过一年没有发布任何更新,我们列出是因为你有可能会有用,但是这些库不太可能会进行BUG修复,特别是未来进行增强。MDPMlPyFFnetPyBrain如果我们遗漏了你最爱的Python机器学习包,通过评论让我们知道。我们很乐意将其添加到文章中。
就业培训申请领取
环球青藤
官方QQ群扫描上方二维码或点击一键加群,免费领取大礼包,加群暗号:青藤。 一键加群
数据分析师相关文章推荐
|数据分析师最新文章推荐
刷题看课 APP下载
免费直播 一键购课
代报名等人工服务
- 1 传统数据和大数据的区别
- 2 数据分析的8种方法都是哪些?
- 3 数据分析的具体流程是什么?
- 4 3大常用的数据分析工具是什么?
- 5 excel中的运算符
- 6 数据分析的作用有哪些?
- 7 电子商务需要分析哪些数据?
- 8 数据分析包括哪些内容?
- 9 数据分析的基本步骤
- 10 rdd是什么?