当前位置: 首页 > 数据分析师 > 数据分析师实战技能 > 数据分析师数据分析 > 学习机器学习时需要尽早知道的三件事

学习机器学习时需要尽早知道的三件事

发布时间:2020年09月28日 12:59:58 来源: 点击量:608

【摘要】学习机器学习时需要尽早知道的三件事我已经在学术界和工业界进行了许多年的机器学习建模工作,在看了一系列讨论“大数据”实用性问题的优秀

学习机器学习时需要尽早知道的三件事

我已经在学术界和工业界进行了许多年的机器学习建模工作,在看了一系列讨论“大数据”实用性问题的优秀视频 Scalable ML 后,我开始思考总结一些在学习机器学习时,我希望能够尽早明白的事情。视频来源于 Mikio Braun,介绍了 Scala 和 Spark 相关的知识。
我希望在学习机器学习时能够尽早明白的事情有三项:

将模型应用到产品中并不是一件简单的小事;在课本中我们很难学习到真正的特征选择和特征提取技巧;模型评估阶段非常重要。

下面让我一个一个地介绍它们。

1. 将模型应用到产品中并不是一件简单的小事

我在 />

2. 在课本中我们很难学习到真正的特征选择和特征提取技巧

特征选择和提取方法和技巧常常无法从课本中学习。这些技巧只能从像 Kaggle 竞赛或现实世界中的项目中学习,甚至有时候需要实际应用这些技巧和方法才能学会它们。而这些工作在整个数据科学项目流程中占据了相当一部分比重。

3. 模型评估阶段非常重要

除非你已经将模型应用到测试集数据上了,否则你都不能说已经进入到预测分析阶段。像交叉验证、评估指标等评估技巧都是非常宝贵的,因为它们只需将你的数据分离成测试集和训练集。但是实际生活通常并不会将已经定义好测试集、训练集的数据给你,所以将真实世界中的数据划分为测试数据和训练数据,是一项充满创造性的工作,其中可能包含许多情感因素。在 Dato 上有许多讨论模型评估的优秀文章。
我认为 Mikio Braun 对训练集和测试集的解释值得一读。我也很喜欢他画的图并将其包含在文中,方便不熟悉训练集和测试集概念的读者理解。


我们在论文、会议甚至在讨论我们解决问题时所用的方法的时候,经常忽略了模型评价。“我们在其中使用了 SVM ”这句话并没有告诉我任何信息,这没有告诉我你的数据来源,你选择的特征,你的模型评估方法,你如何将其应用到产品中,以及你在其中如何使用交叉验证或模型查错。我认为我们需要更多关于机器学习中这些“肮脏”的方面问题的讨论。

我的朋友 Ian 在 Data Science Delivered 上有一个很好的笔记,适合需要为真实情况建立机器学习模型的任何层次的人员阅读。同时也适合希望雇佣数据科学家的招聘人员或者与数据科学团队打交道的经理阅读——如果你正在找人询问“你是如何处理这些肮脏的数据的”。

分享到: 编辑:wangmin

就业培训申请领取
您的姓名
您的电话
意向课程
点击领取

环球青藤

官方QQ

扫描上方二维码或点击一键加群,免费领取大礼包,加群暗号:青藤。 一键加群

绑定手机号

应《中华人民共和国网络安全法》加强实名认证机制要求,同时为更加全面的体验产品服务,烦请您绑定手机号.

预约成功

本直播为付费学员的直播课节

请您购买课程后再预约

环球青藤移动课堂APP 直播、听课。职达未来!

安卓版

下载

iPhone版

下载
环球青藤官方微信服务平台

刷题看课 APP下载

免费直播 一键购课

代报名等人工服务

课程咨询 学员服务 公众号

扫描关注微信公众号

APP

扫描下载APP

返回顶部