机器学习中几个常见模型的优缺点
【摘要】机器学习中几个常见模型的优缺点朴素贝叶斯:优点:对小规模的数据表现很好,适合多分类任务,适合增量式训练。缺点:对输入数据的表达形式
机器学习中几个常见模型的优缺点
朴素贝叶斯:优点:对小规模的数据表现很好,适合多分类任务,适合增量式训练。
缺点:对输入数据的表达形式很敏感(连续数据的处理方式)。
决策树:优点:计算量简单,可解释性强,比较适合处理有缺失属性值的样本,能够处理不相关的特征。缺点:容易过拟合(后续出现了随机森林,减小了过拟合现象)。
逻辑回归:优点:实现简单,分类时计算量非常小,速度很快,存储资源低。缺点:容易欠拟合,一般准确度不高;只能处理二分类问题(softmax解决多分类),需线性可分。
损失函数:
KNN:优点:思想简单,理论成熟,既可以用来做分类也可以用来做回归; 可用于非线性分类;训练时间复杂度为O(n);准确度高,对数据没有假设,对outlier不敏感。缺点:计算量大;样本不平衡时的问题;需要大量的内存;未归一化时影响很大。
SVM:优点:可用于线性/非线性分类,也可以用于回归;低泛化误差;容易解释;计算复杂度较低。缺点:对参数和核函数的选择比较敏感;原始的SVM只比较擅长处理二分类问题。
损失函数:
归一化的作用:
1. 提高梯度下降法求解最优解的速度(很难收敛甚至不能收敛);例如等高线:
2. 有可能提高精度;一些分类器需要计算样本之间的距离,例如KNN,若一个特征值范围较大,距离计算将取决于这个特征。
上一篇:excel表格基本操作之从零开始学习
下一篇:浅析用户行为分析的意义及5大应用场景
就业培训申请领取
环球青藤
官方QQ群扫描上方二维码或点击一键加群,免费领取大礼包,加群暗号:青藤。 一键加群
数据分析师相关文章推荐
|数据分析师最新文章推荐
最新文章
数据分析师各地入口
环球青藤官方微信服务平台
刷题看课 APP下载
免费直播 一键购课
代报名等人工服务
数据分析师热点排行
- 1 传统数据和大数据的区别
- 2 数据分析的8种方法都是哪些?
- 3 3大常用的数据分析工具是什么?
- 4 数据分析的具体流程是什么?
- 5 excel中的运算符
- 6 数据分析的作用有哪些?
- 7 电子商务需要分析哪些数据?
- 8 数据分析包括哪些内容?
- 9 rdd是什么?
- 10 数据分析的基本步骤