人工智能中的知识工程
【摘要】在人工智能中,有很多技术都是能够帮助人工智能去解决很多问题的,比如说图灵测试、机器学习、人工神经网络、深度学习等等。当然只有这些还
在人工智能中,有很多技术都是能够帮助人工智能去解决很多问题的,比如说图灵测试、机器学习、人工神经网络、深度学习等等。当然只有这些还远远不够,人工智能还涉及到了知识工程,下面来给大家好好讲讲关于知识工程的内容。
1.知识工程的由来
首先给大家介绍一下知识工程的由来,知识工程这个术语最早由美国人工智能专家费根鲍姆提出。由于在建立专家系统时所要处理的主要是专家的或书本上的知识,正像在数据处理中数据是处理对象一样,所以它又称知识处理学。
2.知识工程的特点
知识工程研究内容主要包括知识的获取、知识的表示以及知识的运用和处理等三大方面。他们研究人类专家解决问题的方式和方法发现了四个特点。
(1)解题中除了运用演绎方法外,必须求助于归纳的方法和抽象的方法。因为只有运用归纳和抽象才能创立新概念,推出新知识,并使知识逐步深化。
(2)为了解决特定领域的一个具体问题,除了需要一些公共的知识,例如哲学思想、思维方法和一般的数学知识等之外,更需要应用大量与所解问题领域密切相关的知识,即所谓领域知识。
(3)采用启发式的解题方法或称试探性的解题方法。为了解一个问题,特别是一些问题本身就很难用严格的数学方法描述的问题,往往不可能借助一种预先设计好的固定程式或算法来解决它们,而必须采用一种不确定的试探性解题方法。
(4)必须处理问题的模糊性、不确定性和不完全性。因为现实世界就是充满模糊性、不确定性和不完全性的,所以决定解决这些问题的方式和方法也必须是模糊的和不确定的,并应能处理不完全的知识。
3.使用知识工程的步骤是什么?
首先运用已有的知识开始进行启发式的解题,并在解题中不断修正旧知识,获取新知识,从而丰富和深化已有的知识,然后再在一个更高的层次上运用这些知识求解问题,如此循环往复,螺旋式上升,直到把问题解决为止。所以说这也就是一个知识处理的过程。
可见,把知识工程这种模式应用到计算机中,它能够帮助机器学习和获取到更多的知识。对知识工程的简单总结就是一种模拟人类专家解决领域问题的计算机程序系统,大家在认识和学习人工智能的时候,不能忽略知识工程哟,它也是一个十分重要的技术。
就业培训申请领取
环球青藤
官方QQ群扫描上方二维码或点击一键加群,免费领取大礼包,加群暗号:青藤。 一键加群
刷题看课 APP下载
免费直播 一键购课
代报名等人工服务
- 1 传统数据和大数据的区别
- 2 数据分析的8种方法都是哪些?
- 3 数据分析的具体流程是什么?
- 4 3大常用的数据分析工具是什么?
- 5 excel中的运算符
- 6 数据分析的作用有哪些?
- 7 电子商务需要分析哪些数据?
- 8 数据分析包括哪些内容?
- 9 数据分析的基本步骤
- 10 rdd是什么?