数据分析中常犯的统计学错误有哪些?
【摘要】在数据分析的过程中我们经常会用到很多的统计学知识,但有很多统计学知识经常有人用错,从而导致分析结果不尽如人意。那么,数据分析中常犯的统计学错误有哪些呢?今天就跟随小编一起来了解下吧!
1. 变量之间关系可以分为两类
函数关系:反映了事物之间某种确定性关系。
相关关系:两个变量之间存在某种依存关系,但二者并不是一一对应的;反映了事务间不完全确定关系;
2. 为什么要对相关系数进行显著性检验?
实际上完全没有关系的变量,在利用样本数据进行计算时也可能得到一个较大的相关系数值(尤其是时间序列数值)。当样本数较少,相关系数就很大。当样本量从100减少到40后,相关系数大概率会上升,但上升到多少,这个就不能保证了;取决于你的剔除数据原则,还有这组数据真的可能不存在相关性;改变两列数据的顺序,不会对相关系数,和散点图(拟合的函数曲线)造成影响;对两列数据进行归一化处理,标准化处理,不会影响相关系数;我们计算的相关系数是线性相关系数,只能反映两者是否具备线性关系。相关系数高是线性模型拟合程度高的前提;此外相关系数反映两个变量之间的相关性,多个变量之间的相关性可以通过复相关系数来衡量。
3. 增加变量个数,R2会增大;P值,F值只要满足条件即可,不必追求其值过小。
4. 多重共线性与统计假设检验傻傻分不清?
多重共线性与统计假设没有直接关联,但是对于解释多元回归的结果非常重要。相关系数反应两个变量之间的相关性;回归系数是假设其他变量不变,自变量变化一个单位,对因变量的影响,而存在多重共线性(变量之间相关系数很大),就会导致解释困难;比如y~x1+x2;x·1与x2存在多重共线性,当x1变化一个单位,x2不变,对y的影响;而x1与x2高度相关,就会解释没有意义。
一元回归不存在多重共线性的问题;而多元线性回归要摒弃多重共线性的影响;所以要先对所有的变量进行相关系数分析,初步判定是否满足前提---多重共线性。
关于数据分析中常犯的统计学错误有哪些,青藤小编就和您分享到这里了。如果你对大数据工程有浓厚的兴趣,希望这篇文章能够对你有所帮助。如果您还想了解更多数据分析师、大数据工程师的技巧及素材等内容,可以点击本站的其他文章进行学习。
就业培训申请领取
环球青藤
官方QQ群扫描上方二维码或点击一键加群,免费领取大礼包,加群暗号:青藤。 一键加群
数据分析师相关文章推荐
|数据分析师最新文章推荐
刷题看课 APP下载
免费直播 一键购课
代报名等人工服务
- 1 传统数据和大数据的区别
- 2 数据分析的8种方法都是哪些?
- 3 数据分析的具体流程是什么?
- 4 3大常用的数据分析工具是什么?
- 5 excel中的运算符
- 6 数据分析的作用有哪些?
- 7 电子商务需要分析哪些数据?
- 8 数据分析包括哪些内容?
- 9 数据分析的基本步骤
- 10 rdd是什么?