当前位置: 首页 > 数据分析师 > 数据分析师实战技能 > 数据分析师数据分析 > 一个完整的数据分析流程是怎样的?

一个完整的数据分析流程是怎样的?

发布时间:2020年10月15日 08:24:56 来源:环球青藤 点击量:1575

【摘要】大数据在国内已经火热了一段时间,无论是政府还是企业都已开始重视大数据,纷纷设立大数剧部门,数据之于企业的重要性不言而喻。因此优秀的企业为了分析收集来的海量数据,会毫不犹豫地雇佣专业级的数据分析师来帮助公司进行决策,创造价值。

1.数据采集

了解数据采集的意义在于真正了解数据的原始面貌,包括数据产生的时间、条件、格式、内容、长度、限制条件等。这会帮助数据分析师更有针对性的控制数据生产和采集过程,避免由于违反数据采集规则导致的数据问题;同时,对数据采集逻辑的认识增加了数据分析师对数据的理解程度,尤其是数据中的异常变化。

在数据采集阶段,数据分析师需要更多的了解数据生产和采集过程中的异常情况,如此才能更好的追本溯源。另外,这也能很大程度上避免“垃圾数据进导致垃圾数据出”的问题。

2.数据的加工整理

在明确数据分析目标基础上收集到的数据,往往还需要进行必要的加工整理后才能真正用于分析建模。数据的加工整理通常包括数据缺失值处理、数据的分组、基本描述统计量的计算、基本统计图形的绘制、数据取值的转换、数据的正态化处理等,它能够帮助人们掌握数据的分布特征,是进一步深入分析和建模的基础。

3.数据分析

数据分析相对于数据挖掘更多的是偏向业务应用和解读,当数据挖掘算法得出结论后,如何解释算法在结果、可信度、显著程度等方面对于业务的实际意义,如何将挖掘结果反馈到业务操作过程中便于业务理解和实施是关键。

4.数据展现

数据展现即数据可视化的部分,数据分析师如何把数据观点展示给业务的过程。数据展现除遵循各公司统一规范原则外,具体形式还要根据实际需求和场景而定。

5.数据应用

数据应用是数据具有落地价值的直接体现,这个过程需要数据分析师具备数据沟通能力、业务推动能力和项目工作能力。

关于一个完整的数据分析流程是怎样的,青藤小编就和您分享到这里了。如果您对大数据工程有浓厚的兴趣,希望这篇文章可以为您提供帮助。如果您还想了解更多关于数据分析师、大数据工程师的技巧及素材等内容,可以点击本站的其他文章进行学习。

分享到: 编辑:方梦茹

就业培训申请领取
您的姓名
您的电话
意向课程
点击领取

环球青藤

官方QQ

扫描上方二维码或点击一键加群,免费领取大礼包,加群暗号:青藤。 一键加群

绑定手机号

应《中华人民共和国网络安全法》加强实名认证机制要求,同时为更加全面的体验产品服务,烦请您绑定手机号.

预约成功

本直播为付费学员的直播课节

请您购买课程后再预约

环球青藤移动课堂APP 直播、听课。职达未来!

安卓版

下载

iPhone版

下载
环球青藤官方微信服务平台

刷题看课 APP下载

免费直播 一键购课

代报名等人工服务

课程咨询 学员服务 公众号

扫描关注微信公众号

APP

扫描下载APP

返回顶部