大数据征信与“大忽悠”征信的距离有多远
【摘要】大数据征信与“大忽悠”征信的距离有多远大数据征信自今年异军突起以来就被认定为“救世主”般的角色,成为资本和市场追逐的对象。被负面舆
大数据征信与“大忽悠”征信的距离有多远
大数据征信自今年异军突起以来就被认定为“救世主”般的角色,成为资本和市场追逐的对象。被负面舆论逼入“墙角”的互联网金融更是如获至宝,感慨找到了解决风险管理的“良药”。不过,方兴未艾的征信行业尚不足以支撑起不断扩展的商业蓝图,其最核心的独立、客观、公正、规范原则岌岌可危,稍有不慎,或将沦为一场虚有其表的“概念游戏”。
或正如征信第一股商安信CEO陈晓东先生所言,国内征信市场现在处在一个一哄而上的阶段,以后会有一个沉淀的过程,优胜劣汰,剩下来的将是具有优质数据和强大评级体系的征信机构。真正的爆发期将出现在市场沉淀之后。
那么何为征信?仿若斡旋云端、披着面纱的征信其实没那么神秘。
征信是专业化的、独立的第三方机构为个人或企业建立信用档案,依法采集、客观记录其信用信息,并依法对外提供信用信息服务的一种活动。按业务模式可分为企业征信和个人征信,按服务对象可分为信贷征信、商业征信、雇佣征信等。
我国征信业起步较晚,信用生态建设相对滞后,但在互联网时代却存在独特的机会。在互联网金融发展如火如荼之际,基于大数据技术的互联网征信应运而生,一举踏上风头浪尖,又反向推动了国内信用经济的发展。
截至2015年10月底,国内出现问题的互联网金融平台数已达到1078家,其中10月新增47家。互联网金融在一定程度上覆盖了传统金融服务盲区(央行征信系统收录自然人8.7亿多,但有信贷记录的自然人仅有约3.7亿,这意味着还有四分之三的人在申请信贷等服务时会遇到障碍),但是由于信息不对称、信息采集难等因素,一直处在野蛮生长的状态。
对金融业,征信完善了对风险的识别、判断、评估和管理,有利于加快授信过程,分级定价,降低优质借款人借贷成本,大幅提高信贷效率,以蚂蚁小贷为例,放款时间基本在3分钟以内,小则几千,多则几万。对商业,征信逐渐被作为经济运行和社会管理的标准,以此撬动的商业模式创新迅速拓展至酒店、租房、招聘、旅游等行业。
金融服务对双11的渗透融合堪称互联网征信功成名就的一役。数家电商各领风骚出新招,最终交易额也不出意外地攀上历史新高。而在公众为天猫912亿的交易数据惊叹时,有心人已经发现,今日与往年不一样的气象。
双11当天,蚂蚁花呗共发放6048万笔消费信贷,占支付宝交易总量的8.5%,与其功能相似的京东白条,同比增长800%。首次接入双11的花呗与京东白条同为信用支付产品,即基于电商平台、支付等沉淀的海量数据,借助互联网大数据、云计算等技术,经过综合信用评估后,给予用户在指定店铺享受先消费、后付款服务的信用额度,并支持分期还款。
花呗对接的是蚂蚁小贷,京东白条对接的是京东金融。互联网金融深度嵌入消费场景,凭借更具便捷性、更具场景化、更个性化的产品迅速崛起。但相比传统消费金融(银行信用卡与消费贷款),互联网消费金融在征信、风控、资金周转、催收等方面仍面临着诸多阻碍和风险。
相对于传统征信多采用信贷数据和公共机构数据作为数据源,互联网征信拓宽了数据采集维度,包括电商数据、社交数据等,一方面能更加全面的反映信用主体的情况,但另一方面,由于央行征信中心的金融数据库还未向这些机构开放,其数据评估的准确性和公信力难免被人质疑。
大数据征信的软肋
今年,在政府鼓励和市场迫切需求双重驱动下,国内掀起了一股狂热的互联网征信浪潮,电商平台、互联网公司、大数据公司、支付机构、传统征信机构、P2P平台等都是不同的代表。从应用场景创新和品牌影响力上讲,阿里、腾讯、百度等互联网公司无疑更受瞩目。从专业性上来说,商安信、中诚信等传统征信机构在评级模型、商业征信业务等方面更具优势。
相比对企业征信公司的备案制,个人征信公司的审核制显得更为严格。今年1月,央行印发《关于做好个人征信业务准备工作的通知》,首批入围的芝麻信用、腾讯征信、前海征信等8家机构在年中完成验收工作。然而时至今日,仍未下发个人征信牌照,由此足见央行的审慎态度。
首批入围征信机构大部分将信用评分作为首推产品,并快速拓展应用场景,抢占市场制高点。如芝麻征信的“芝麻分”和考拉征信的“考拉分”已经应用到酒店、租车、旅游等多个场景;前海征信的 “好信度”目前主要服务于金融信贷,华道征信已推出的“猪猪分”专门用于检验租房者信用状况,中诚信的“万象分”则可以用于就医、保险领域。
但已经有不少人心存疑虑,质疑大数据征信的含金量和可靠性:
1、 数据整合难:央行征信系统并未开放,征信机构无法获取珍贵的信贷数据,而央行对企业在小贷、租赁金融的信贷行为也难以全面掌握;公共数据广泛分散在工商、质检、海关、税务等政府和业务管理部门,虽然建设统一信用信息平台已提上日程,但数据孤岛的问题仍难解;芝麻信用、腾讯征信等所背靠的集团,以及各类P2P平台自建的征信公司本身存在业务交叉和竞争关系,共享“黑名单”易,共享“白名单”难。
2、 数据标准缺失:到底哪些信息需要列入征信评估范畴还没一个统一的界定,越来越多的信息被纳入征信范畴,交通违章、地铁逃票等似乎什么都可以往里装,这些都可能构成个人不良征信记录影响个人信贷。
3、 公信力遭质疑:“征信采集者与使用者没有任何关系”的独立第三方原则被模糊,首批入围的民营征信机构数据的采集和使用都与自身有着千丝万缕的联系,这就决定了现在市场中的很多模型只能适用于自己的小生态,同时民营征信机构既做裁判又做选手,最终评价的公正性或在市场份额争抢中失衡。
4、 评级模型五花八门:中国并不缺数据,但缺乏可以数据通用的评估模型。国内个人征信大多模仿了美国FICO的模型,但在评估维度上五花八门,加上采集的数据差异,这就造成同一个人在不同平台得到的评分可能会千差万别。而企业征信的评级模型,以及债券评级模型的严谨性、科学性在国际上并无强公信力。
业内专家指出,只根据数据分析出的规律并不全面,如果仅据此进行风控审核,难免会出现疏漏或偏差。大数据只能作为辅助手段,不能作为风控的决策依据。
日前,有媒体报道,商务部正在酝酿制定《互联网金融机构信用评级与认证标准》。中国互联网金融信息查询系统主任、《标准》制定课题组副组长徐洲指出,只有独立的第三方才能避免为利益左右,才能把促进行业规范发展放在第一位,做到客观、公正、及时的信息披露。
某金融研究机构人士分析认为,一个从各处收集数据并完成大数据征信的机构,不能是数据来源方,也不能是金融服务的提供方,这样才能避免数据打架的现象。征信行业要真正兴起,发挥应有的作用,还是需要发挥出商安信、中诚信等独立第三方征信机构的力量。
市场在哪儿
千亿、万亿?关于征信市场空间有多大的讨论一时沸沸扬扬。
平安证券发表的征信行业专题报告《计算机行业征信市场系列研究》预计,中国征信行业未来市场规模将达千亿元,其中企业征信市场规模有百亿元,个人征信市场规模有千亿元。
美国富国银行高级副总裁王强在《给中国个人征信市场估值》中预计,中国个人征信市场规模大概350亿美元。换算成人民币,超2000亿元。
不过,央行征信管理局局长王煜却给市场泼了一盆冷水,其认为征信市场容量有限,不容易赚钱,有人号称征信市场有上千亿的潜力,有忽悠的成分。资金不是最重要的,更需要技术、人才,需要反映信用信息的数据。搞攀比,抢位置,不真心干或者说没有能力干,是不可持续的。
征信属于信用服务业的一环,作为一个服务行业,它的的市场到底在哪儿?
1、 国际商贸。国内征信起初是为配合对外贸易调查的需求而产生的,包括企业和保险机构的信用核实、资信报告服务等。最早的企业征信机构是由政府部门主导建立,但其自身具有严重的局限性,后大量民营机构和外资机构介入市场。
目前来看,国内提供贸易征信服务比较成熟的民营机构仅有商安信一家,但其依托的也是世界前三的信用信息服务机构Creditreform在评级体系和数据资源上的支持。作为传统征信机构,商安信挂牌上市以来积极谋求进军互联网征信,11月份已发布三款新产品:3A-biz 2.0商业风险管理多应用平台、3A-eBiz移动端和3A-Verify。3A-biz 2.0商业风险管理多应用平台,打通了信用认证、评估、核实等应用场景和传统PC端与手机移动端的数据交换通道,与市场中偏重打分的产品截然不同,具有一定的行业跨越意义。
随着中国对外开放的升级和“一带一路”新战略的实施,贸易环节的信用服务有增无减,市场容量很大。
2、 互联网消费金融。国务院11月23日发布指导意见:积极发挥新消费引领作用,加快培育形成新供给新动力;支持发展消费信贷,鼓励符合条件的市场主体成立消费金融公司,将消费金融公司试点范围推广至全国。
在我国,可以提供消费信贷服务的主要为银行、小贷公司、消费金融公司。银行的消费信贷服务由来已久,包括信用卡和消费贷款,但是受限于审核标准,长时间的审核流程、三、四线城市开发缓慢等因素,一直处于不温不火的状态。随着金融服务与互联网不断纵深融合,互联网消费金融产品迅速崛起,成为消费金融爆发的重要力量。据艾瑞咨询公布的首份消费金融报告数据显示,预计到2017年,中国消费金融整体市场将突破千亿,三年复合增长率高达94%。而作为互联网征信作为消费金融推进的基础,市场也有随之爆发的可能。
3、 信贷业务。中小企业融资难由来已久,一方面是因为企业资质有限,缺少实物抵押,抗风险能力低,另一方面是因为银行近来随对中小企业融资虽有所倾斜,但额度仍然有限,流程依然复杂。互联网金融在一定程度上解决了这一问题,并催生了对征信的巨大需求。现今中小贷款机构在项目的风控环节主要还是靠人力审查,纸质材料传递,外加灰色渠道查央行征信。贷前黑名单扫描及贷后管理跟踪基本为空白。整体风控的效率非常低下,以及流程容易受人为因素干扰出错等。
在个人信贷方面,互联网金融提供者倾向于自建平台,合作共建行业黑名单,以规避风险提高效率。而在企业信贷方面,则更多依赖第三方征信机构的力量。在这里,就不得不提一下商安信所引入的Creditreform的SI评估模型(笔者十分看好)。和绝大多数企业评估模型侧重对历史数据分析不同,Creditreform侧重对流动性和短期偿债能力的监测,能直观反映企业近期状况与风险度。
另外,随着阿里网商银行和腾讯微众银行两家互联网银行的开业,以及其市场上各类小贷和消费信贷产品的陆续推出,传统银行以往依托于自身客户群体和线下的物理网点进行客户资料收集、信贷审核和贷款发放的传统模式必然会受到较大的冲击,预期未来银行将加强与征信机构的合作。
4、 应收账业务。信用服务业可分为前端的数据采集,中端的信用认证和信用评估,后端的资产处置。互联网征信公司大多仅从事前端和中端两部分,对后端的资产处置、应收账业务罕有涉及(难、累),目前提供这类服务的主要还是传统征信公司和第三方外包公司。
应收账业务包括企业应收账管理与金融机构应收账管理两大类。根据人民银行 2015年2 季度的数据,社会融资规模存量在 131.58 万亿,增速为 11.9%,年增长规模在 10 万亿以上。假设需要进行资产处置的资产为 1%,则市场规模达1.31万亿,空间极大,而企业应收账管理市场更是难以估计。
5、 对传统商业模式的改造。在这方面步子迈的最快的当属阿里旗下的芝麻信用,芝麻分高于600分可以免押租用永安城市自行车,在6000多间酒店免押金入住,650分以上可以在神州租车、一嗨租车信用租车,高于700分无须提供其他资料能申请新加坡签证。大数据征信应用场景拓展撬动的商业模式创新,动辄催生了一个又一个新市场,预期未来,这部分市场将把持在背景深厚的互联网征信公司手中。
作为一个新兴行业,征信业在发展初期出现混乱局面本无可厚非。但是,征信已逐渐充当起金融创新、市场运行和社会管理的基础桩,更需要慎之又慎的前行。
就业培训申请领取
环球青藤
官方QQ群扫描上方二维码或点击一键加群,免费领取大礼包,加群暗号:青藤。 一键加群
数据分析师相关文章推荐
|数据分析师最新文章推荐
刷题看课 APP下载
免费直播 一键购课
代报名等人工服务
- 1 传统数据和大数据的区别
- 2 数据分析的8种方法都是哪些?
- 3 3大常用的数据分析工具是什么?
- 4 数据分析的具体流程是什么?
- 5 excel中的运算符
- 6 数据分析的作用有哪些?
- 7 电子商务需要分析哪些数据?
- 8 数据分析包括哪些内容?
- 9 rdd是什么?
- 10 数据分析的基本步骤