大数据恐惧症
【摘要】大数据恐惧症大数据是人类文明的又一个破坏性发明 现在小崔和方舟子还在争辩,转基因是世界人口爆炸的福音还是对人身体的伤害?这个辩论,
大数据恐惧症
大数据是人类文明的又一个破坏性发明
现在小崔和方舟子还在争辩,转基因是世界人口爆炸的福音还是对人身体的伤害?这个辩论,时间会给出答案,但是大数据更是一个值得大家争辩的事情,因为大数据涉及了我们的生活习惯和社会法则。大数据带来的副作用,大大超过了以前人类发明的范畴。
商业的大数据就是通过电子化数据的收集,包括手机轨迹,通话,信息,上网行为,购买,旅游,金融,等全方位的数据收集,对你进行分类、判断,推销。作为国内电商时代的开启者,淘宝上云集了数量惊人的数据:每一笔订单不仅包含顾客姓名、收货地址、下单时间等基本信息,甚至连顾客什么时候开始浏览某一件宝贝,跟售前客服讨价还价的过程,在几点几分下单成交,都有全部记录。通过这些信息记录,可以鉴别出你喜欢的东西,推断你的身份、收入、银行存款、家庭事业状况等等。在互联网日益繁荣、BAT三巨头触角无所不达的今天,越来越多人的工作、生活、社交都逃不开百度、腾讯、阿里、360等大小互联网企业甚至个人的全方位数据监控。
有许多人认为掌握了越多的数据,越详细的数据,就有机会通过“大数据”分析法来获得一个金矿。但当这些网站比你妈还更了解你的时候,你感觉到的不是关怀,而是恐怖。
现在的大数据分析,缺乏取样标准,不代表真实的因果关系。
在传统的统计学里面,最重要是数据的采样。比如一种药物的有效性,需要两组对比人群,在严密的实验条件下,长期跟踪,才能都出结论。现在的大数据分析,往往是数据的堆积和简单的关联分析。从严格的科学来讲,是一门伪科学。因为数据只是数据,只是过去,简单的数据积累不说明任何问题,不能真正判断一个人,预测一件事。如果基于大数据武断营销,那就是真正的恐怖了。从以下几个方面,就可以看出为什么大数据会让你害怕:
1. 害怕身份被盗用
在移动互联网时代,我们的朋友更多出现在网上。社交网络、QQ、微信、微博取代了面对面的人际交流,虚拟交流也在改变世界和人。基于大数据的应用流行之时,将有大量的人借用和盗用网络身份,达到个人目的。也许你从来没有离开老家,你的网络大数据却涉嫌犯罪。
2. 害怕数据造假
在一切看数据说话的今天,每个人、每个企业和商家或多或少都在改变数据。因为各种利益关系错综复杂,报出来的数据往往都应景而异。大数据时代,有意的网络数据造假也能成为一个商业领域,用来帮助别有用心的人或商家制造数据。
3. 害怕数据框定
比大数据更复杂的还是人。从心理学的角度,让人做出选择,就意味着要舍弃其他的可能性,这是一件异常困难的事情。人的认识和选择会应为各种原因,产生跳跃性的变化。如果按照数据分析,把人丢进一个箩筐终生定格,据此给他不光是特定类的商品,进而决定他能否从事某件事,限制他的网络视野,也是很不合理的。
例如,把大数据作为广告精准投放标准,虽说有一定合理性,但也并不绝对,这是由于人类的购买心理十分复杂。比如说有个消费者只是浏览了一辆汽车,跟着是汽车广告通过各种方式和渠道的狂轰滥炸,除了骚扰,并没有效果。
4. 害怕数据不公和数据歧视
完全依赖大数据进行分析、对人进行分类,其实将触及社会不公和歧视。作为商家,考虑到经营成本、营销利润和效率,其实暗地里都会打着各种小九九,而不是表面上把各类消费者一视同仁。毋庸置疑,高端消费者是各类企业的最爱,而低端消费者却让企业皱眉。但现在呢?每个人的消费记录和各种数据都被电子化的方式采集和收集着,一举一动逃不过大数据的记录。对保险公司营销员来说,你这个人的所有信息数据可以一览无余,不用你开口,他已经判断出是不是需要让你参保、保费标准等等;消费数据记录和售后服务记录,甚至都能让卖家挑选买家,把你列入顾客黑名单也不是不可能。
不可避免的,一旦成为数据穷人,那么就会面临歧视服务,所有消费者都是平等的这句话将成为历史。
5. 害怕数据垄断
目前的商业格局是:两方数据垄断势力正在形成,一方是国营企业,如电信、电力、医院等,一方是以BAT为中心的互联网大佬。特别是后者,在广泛收集数据之后,已经以大数据为依托,开始布局全行业的垄断性的经营,范围包括电子商务,教育,医疗,物流等。而这些垄断一旦形成,将大大降低中国企业的创新能力和竞争能力。
就业培训申请领取
环球青藤
官方QQ群扫描上方二维码或点击一键加群,免费领取大礼包,加群暗号:青藤。 一键加群
数据分析师相关文章推荐
|数据分析师最新文章推荐
刷题看课 APP下载
免费直播 一键购课
代报名等人工服务
- 1 传统数据和大数据的区别
- 2 数据分析的8种方法都是哪些?
- 3 数据分析的具体流程是什么?
- 4 3大常用的数据分析工具是什么?
- 5 excel中的运算符
- 6 数据分析的作用有哪些?
- 7 电子商务需要分析哪些数据?
- 8 数据分析包括哪些内容?
- 9 数据分析的基本步骤
- 10 rdd是什么?