当前位置: 首页 > 数据分析师 > 数据分析师实战技能 > 数据分析师数据分析 > 数据分析之美 决策树R语言实现

数据分析之美 决策树R语言实现

发布时间:2020年09月29日 01:14:52 来源: 点击量:625

【摘要】数据分析之美:决策树R语言实现R语言实现决策树1 准备数据[plain] view plain copy > install packages("tree") > library(tree)

数据分析之美:决策树R语言实现

R语言实现决策树

1.准备数据
[plain] view plain copy
    > install.packages("tree")  
    > library(tree)  
    > library(ISLR)  
    > attach(Carseats)  
    > High=ifelse(Sales<=8,"No","Yes") //set high values by sales data to calssify  
    > Carseats=data.frame(Carseats,High) //include the high data into the data source  
    > fix(Carseats) 
2.生成决策树
[plain] view plain copy

    > tree.carseats=tree(High~.-Sales,Carseats)  
    > summary(tree.carseats)  

[plain] view plain copy
    //output training error is 9%  
    Classification tree:  
    tree(formula = High ~ . - Sales, data = Carseats)  
    Variables actually used in tree construction:  
    [1] "ShelveLoc"   "Price"       "Income"      "CompPrice"   "Population"   
    [6] "Advertising" "Age"         "US"           
    Number of terminal nodes:  27   
    Residual mean deviance:  0.4575 = 170.7 / 373   
    Misclassification error rate: 0.09 = 36 / 400  
3. 显示决策树
[plain] view plain copy

    > plot(tree . carseats )  
    > text(tree .carseats ,pretty =0) 
4.Test Error

[plain] view plain copy

    //prepare train data and test data  
    //We begin by using the sample() function to split the set of observations sample() into two halves, by selecting a random subset of 200 observations out of the original 400 observations.   
    > set . seed (1)  
    > train=sample(1:nrow(Carseats),200)  
    > Carseats.test=Carseats[-train,]  
    > High.test=High[-train]  
    //get the tree model with train data  
    > tree. carseats =tree (High~.-Sales , Carseats , subset =train )  
    //get the test error with tree model, train data and predict method  
    //predict is a generic function for predictions from the results of various model fitting functions.  
    > tree.pred = predict ( tree.carseats , Carseats .test ,type =" class ")  
    > table ( tree.pred ,High. test)  
    High. test  
    tree. pred No Yes  
    No 86 27  
    Yes 30 57  
    > (86+57) /200  
    [1] 0.715 

5.决策树剪枝
[plain] view plain copy

    /**  
    Next, we consider whether pruning the tree might lead to improved results. The function cv.tree() performs cross-validation in order to cv.tree() determine the optimal level of tree complexity; cost complexity pruning is used in order to select a sequence of trees for consideration.   
      
    For regression trees, only the default, deviance, is accepted. For classification trees, the default is deviance and the alternative is misclass (number of misclassifications or total loss).  
    We use the argument FUN=prune.misclass in order to indicate that we want the classification error rate to guide the cross-validation and pruning process, rather than the default for the cv.tree() function, which is deviance.   
      
    If the tree is regression tree,   
    > plot(cv. boston$size ,cv. boston$dev ,type=’b ’)  
    */  
    > set . seed (3)  
    > cv. carseats =cv. tree(tree .carseats ,FUN = prune . misclass ,K=10)  
    //The cv.tree() function reports the number of terminal nodes of each tree considered (size) as well as the corresponding error rate(dev) and the value of the cost-complexity parameter used (k, which corresponds to α.  
    > names (cv. carseats )  
    [1] " size" "dev " "k" " method "  
    > cv. carseats  
    $size //the number of terminal nodes of each tree considered  
    [1] 19 17 14 13 9 7 3 2 1  
    $dev  //the corresponding error rate  
    [1] 55 55 53 52 50 56 69 65 80  
    $k  // the value of the cost-complexity parameter used  
    [1] -Inf 0.0000000 0.6666667 1.0000000 1.7500000  
    2.0000000 4.2500000  
    [8] 5.0000000 23.0000000  
    $method   //miscalss for classification tree  
    [1] " misclass "  
    attr (," class ")  
    [1] " prune " "tree. sequence "  

[plain] view plain copy

    //plot the error rate with tree node size to see whcih node size is best  
    > plot(cv. carseats$size ,cv. carseats$dev ,type=’b ’)  
      
    /**  
    Note that, despite the name, dev corresponds to the cross-validation error rate in this instance. The tree with 9 terminal nodes results in the lowest cross-validation error rate, with 50 cross-validation errors. We plot the error rate as a function of both size and k.  
    */  
    > prune . carseats = prune . misclass ( tree. carseats , best =9)  
    > plot( prune . carseats )  
    > text( prune .carseats , pretty =0)  
      
    //get test error again to see whether the this pruned tree perform on the test data set  
    > tree.pred = predict ( prune . carseats , Carseats .test , type =" class ")  
    > table ( tree.pred ,High. test)  
    High. test  
    tree. pred No Yes  
    No 94 24  
    Yes 22 60  
    > (94+60) /200  
    [1] 0.77

分享到: 编辑:wangmin

就业培训申请领取
您的姓名
您的电话
意向课程
点击领取

环球青藤

官方QQ

扫描上方二维码或点击一键加群,免费领取大礼包,加群暗号:青藤。 一键加群

绑定手机号

应《中华人民共和国网络安全法》加强实名认证机制要求,同时为更加全面的体验产品服务,烦请您绑定手机号.

预约成功

本直播为付费学员的直播课节

请您购买课程后再预约

环球青藤移动课堂APP 直播、听课。职达未来!

安卓版

下载

iPhone版

下载
环球青藤官方微信服务平台

刷题看课 APP下载

免费直播 一键购课

代报名等人工服务

课程咨询 学员服务 公众号

扫描关注微信公众号

APP

扫描下载APP

返回顶部