当前位置: 首页 > 数据分析师 > 数据分析师实战技能 > 数据分析师数据分析 > Python模拟随机游走图形效果示例

Python模拟随机游走图形效果示例

发布时间:2020年09月28日 20:34:43 来源: 点击量:558

【摘要】Python模拟随机游走图形效果示例本文实例讲述了Python模拟随机游走图形效果。分享给大家供大家参考,具体如下:在python中,可以利用数组操

Python模拟随机游走图形效果示例

本文实例讲述了Python模拟随机游走图形效果。分享给大家供大家参考,具体如下:

在python中,可以利用数组操作来模拟随机游走。

下面是一个单一的200步随机游走的例子,从0开始,步长为1和-1,且以相等的概率出现。纯Python方式实现,使用了内建的 random 模块:

# 随机游走importmatplotlib.pyplot as pltimportrandomposition=0walk=[position]steps=200foriinrange(steps):  step=1ifrandom.randint(0,1)else-1  position+=step  walk.append(position)fig=plt.figure()plt.title("www.jb51.net")ax=fig.add_subplot(111)ax.plot(walk)plt.show()

第二种方式:简单的把随机步长累积起来并且可以可以使用一个数组表达式来计算。因此,我用 np.random 模块去200次硬币翻转,设置它们为1和-1,并计算累计和:

# 随机游走importmatplotlib.pyplot as pltimportnumpy as npnsteps=200draws=np.random.randint(0,2, size=nsteps)steps=np.where(draws >0,1,-1)walk=steps.cumsum()fig=plt.figure()plt.title("www.jb51.net")ax=fig.add_subplot(111)ax.plot(walk)plt.show()

一次模拟多个随机游走

# 随机游走importmatplotlib.pyplot as pltimportnumpy as npnwalks=5nsteps=200draws=np.random.randint(0,2, size=(nwalks, nsteps))# 0 or 1steps=np.where(draws >0,1,-1)walks=steps.cumsum(1)fig=plt.figure()plt.title("www.jb51.net")ax=fig.add_subplot(111)foriinrange(nwalks):  ax.plot(walks[i])plt.show()

当然,还可以大胆的试验其它的分布的步长,而不是相等大小的硬币翻转。你只需要使用一个不同的随机数生成函数,如 normal 来产生相同均值和标准偏差的正态分布:

steps=np.random.normal(loc=0, scale=0.25, size=(nwalks, nsteps))

分享到: 编辑:wangmin

就业培训申请领取
您的姓名
您的电话
意向课程
点击领取

环球青藤

官方QQ

扫描上方二维码或点击一键加群,免费领取大礼包,加群暗号:青藤。 一键加群

绑定手机号

应《中华人民共和国网络安全法》加强实名认证机制要求,同时为更加全面的体验产品服务,烦请您绑定手机号.

预约成功

本直播为付费学员的直播课节

请您购买课程后再预约

环球青藤移动课堂APP 直播、听课。职达未来!

安卓版

下载

iPhone版

下载
环球青藤官方微信服务平台

刷题看课 APP下载

免费直播 一键购课

代报名等人工服务

课程咨询 学员服务 公众号

扫描关注微信公众号

APP

扫描下载APP

返回顶部