大数据分析需全面解决方案
【摘要】大数据分析需全面解决方案 当前,越来越多企业将大数据的分析结果作为其判断未来发展的依据。同时,传统的商业预测逻辑正日益被新的大数据
大数据分析需全面解决方案
当前,越来越多企业将大数据的分析结果作为其判断未来发展的依据。同时,传统的商业预测逻辑正日益被新的大数据预测所取代。但是,我们要谨慎管理大家对大数据的期望值,因为海量数据只有在得到有效治理的前提下才能进一步发展其业务价值。
最广为人知的大数据定义是Gartner给出的大数据的3V特性:巨大的数据量(Volume)、数据的快速处理(Velocity)、多变的数据结构和类型(Variety)。根据这一定义,大家首先想到的是IT系统中一直难以处理却又不容忽视的非结构化数据。也就是说,大数据不仅要处理好交易型数据的分析,还把社交媒体、电子商务、决策支持等信息都融入进来。现在,分布式处理技术Hadoop和NoSQL已经能对非结构化数据进行存储、处理、分析和挖掘,但未能为满足客户的大数据需求提供一个全面的解决方案。
事实上,普遍意义上的大数据范围更加广泛,任何涉及海量数据及多数据源的复杂计算,均属大数据范畴,而不仅局限于非结构化数据。因此,诸如电信运营商所拥有的巨量用户的各类详细数据、手机开关机信息、手机在网注册信息、手机通话计费信息、手机上网详细日志信息、用户漫游信息、用户订阅服务信息和用户基础服务信息等,均可划归为大数据。
与几年前兴起的云计算相比,大数据实现其业务价值所要走的路或许更为长远。但是企业用户已经迫不及待,越来越多企业高层倾向于将大数据分析结果作为其商业决策的重要依据。在这种背景下,我们必须找到一种全面的大数据解决方案,不仅要解决非结构化数据的处理问题,还要将功能扩展到海量数据的存储、大数据的分布式采集和交换、海量数据的实时快速访问、统计分析与挖掘和商务智能分析等。
典型的大数据解决方案应该是具有多种能力的平台化解决方案,这些能力包括结构化数据的存储、计算、分析和挖掘,多结构化数据的存储、加工和处理,以及大数据的商务智能分析。这种解决方案在技术应具有以下四个特性:软硬集成化的大数据处理、全结构化数据处理的能力、大规模内存计算的能力、超高网络速度的访问。
就业培训申请领取
环球青藤
官方QQ群扫描上方二维码或点击一键加群,免费领取大礼包,加群暗号:青藤。 一键加群
数据分析师相关文章推荐
|数据分析师最新文章推荐
刷题看课 APP下载
免费直播 一键购课
代报名等人工服务
- 1 传统数据和大数据的区别
- 2 数据分析的8种方法都是哪些?
- 3 3大常用的数据分析工具是什么?
- 4 数据分析的具体流程是什么?
- 5 excel中的运算符
- 6 数据分析的作用有哪些?
- 7 电子商务需要分析哪些数据?
- 8 数据分析包括哪些内容?
- 9 rdd是什么?
- 10 数据分析的基本步骤