R语言实用案例分析-相关系数的应用
【摘要】R语言实用案例分析-相关系数的应用在日常工作中,经常会存在多个变量之间存在关联关系,比如学习数学好的同学,物理成绩可能也比较高。在公
R语言实用案例分析-相关系数的应用
在日常工作中,经常会存在多个变量之间存在关联关系,比如学习数学好的同学,物理成绩可能也比较高。在公司中外貌和讨人喜欢的关系往往也比较大,在人事招聘过程中,如果想要更加综合的评价某个人,需要把相关系数比较高的方面进行权重或者均值处理。
如以下案例:
现有30名应聘者来公司应聘,公司为这些应聘者制定了15项指标,分别是:求职信的形式(FL)、外貌(APP)、专业能力(AA)、讨人喜欢(LA)、自信心(SC)、洞察力(LC)、诚实(HON)、推销能力(SMS)、经验(EXP)、驾驶水平(DRV)、事业心(AMB)、理解能力(POT)、交际能力(KJ)和适应性(SUIT)。每项分数是从0到10分,0分最低,10分最高。每位求职者的15项指标如下所示,公司计划只录取前5名申请者,公司到底该如何选择呢?
#读入数据
rt<-read.table("applicant.data")
AVG<-apply(rt,1,mean)
sort(AVG,descreasing=TRUE)
attach(rt)
#找到相关系数高的分为一组,然后取平均值,防止值过大
rt$G1<-(SC+LC+SMS+DRV+AMB+GSP+POT)/7
rt$G2<-(FL+EXP+SUIT)/3
rt$G3<-(LA+HON+KJ)/3
rt$G4<-AA
rt$G5<-APP
AVG<-apply(rt[,16:20], 1, mean)
sort(AVG, decreasing = TRUE)
找出前5名
就业培训申请领取
环球青藤
官方QQ群扫描上方二维码或点击一键加群,免费领取大礼包,加群暗号:青藤。 一键加群
数据分析师相关文章推荐
|数据分析师最新文章推荐
刷题看课 APP下载
免费直播 一键购课
代报名等人工服务
- 1 传统数据和大数据的区别
- 2 数据分析的8种方法都是哪些?
- 3 数据分析的具体流程是什么?
- 4 3大常用的数据分析工具是什么?
- 5 excel中的运算符
- 6 数据分析的作用有哪些?
- 7 电子商务需要分析哪些数据?
- 8 数据分析包括哪些内容?
- 9 数据分析的基本步骤
- 10 rdd是什么?