当前位置: 首页 > 数据分析师 > 数据分析师实战技能 > 数据分析师数据分析 > 机器学习和深度学习的区别是什么?

机器学习和深度学习的区别是什么?

发布时间:2020年09月28日 05:05:11 来源: 点击量:465

【摘要】 现在有很多人对机器学习和深度学习的概念并不是很明白,其实深度学习是机器学习中的一部分,而机器学习是深度学习的基础,这两个知识体系

现在有很多人对机器学习和深度学习的概念并不是很明白,其实深度学习是机器学习中的一部分,而机器学习是深度学习的基础,这两个知识体系都是服务于人工智能的。在这篇文章中我们给大家介绍一下关于机器学习和深度学习的区别,希望这篇文章能够帮助大家理解机器学习和深度学习。

那么什么是机器学习呢?一般来说,为了实现人工智能,我们会使用机器学习。我们有几种用于机器学习的算法。这些算法有决策树、随机森林、人工神经网络。而机器学习有3类学习算法,分别是监督学习、无监督学习、增强学习学习,其中,监督机器学习算法进行预测。此外,该算法在分配给数据点的值标签中搜索模式。无监督机器学习算法则是没有标签与数据关联。并且,这些 ML 算法将数据组成簇。此外,他需要描述其结构,并使复杂的数据看起来简单且能有条理的分析。而增强机器学习算法:我们使用这些算法选择动作。并且,我们能看到它基于每个数据点。一段时间后,算法改变策略来更好地学习。

那么什么是深度学习呢?机器学习只关注解决现实问题。它还需要人工智能的一些想法。机器学习通过旨在模仿人类决策能力的神经网络。机器学习工具和技术是两个主要的仅关注深度学习的子集。我们需要应用它来解决任何需要思考的问题人类的或人为的。任何深度神经网络都将包含三层,分别是输入层、隐藏层、输出层。

那么深度学习和机器学习的关系是什么呢?通常我们用机器算法来解析数据,学习数据,并从中做出理智的判定。根本上讲,深度学习用于创建可自我学习和可理智判定的人工“神经网络”。我们可以说深度学习是机器学习的子领域。而机器学习与深度学习对比具体体现在四方面,第一就是数据依赖,一般来说,性能是区别二者的最主要之处。当数据量小时,深度学习算法表现不佳。这就是深度学习算法需要大量的数据才能完美理解的唯一原因。第二就是硬件依赖通常,深度学习依赖于高端设备,而传统学习依赖于低端设备。因此,深度学习要求包含GPU。这是它工作中不可或缺的一部分。它们还需要进行大量的矩阵乘法运算。第三就是功能工程化,在此,领域知识被用于创建特征提取器,以降低数据的复杂性,并使模式对学习算法的工作原理上更可见,虽然处理起来非常困难。 因此,这是耗时并需要专业知识的。第四就是解决问题的方法,一般来说,我们使用传统算法来解决问题。但它需要将问题分解为不同的部分以单独解决它们。要获得结果,请将它们全部合并起来。

关于机器学习和深度学习的相关知识我们就给大家介绍到这里了,大家在进行学习机器学习的时候一定不要忽视这两个知识的区别,这样能够帮助大家更好地理解机器学习。

分享到: 编辑:wangmin

就业培训申请领取
您的姓名
您的电话
意向课程
点击领取

环球青藤

官方QQ

扫描上方二维码或点击一键加群,免费领取大礼包,加群暗号:青藤。 一键加群

绑定手机号

应《中华人民共和国网络安全法》加强实名认证机制要求,同时为更加全面的体验产品服务,烦请您绑定手机号.

预约成功

本直播为付费学员的直播课节

请您购买课程后再预约

环球青藤移动课堂APP 直播、听课。职达未来!

安卓版

下载

iPhone版

下载
环球青藤官方微信服务平台

刷题看课 APP下载

免费直播 一键购课

代报名等人工服务

课程咨询 学员服务 公众号

扫描关注微信公众号

APP

扫描下载APP

返回顶部