当前位置: 首页 > 数据分析师 > 数据分析师实战技能 > 数据分析师数据分析 > 漏斗图为什么一般是倒置的?

漏斗图为什么一般是倒置的?

发布时间:2020年09月28日 04:21:05 来源: 点击量:1039

【摘要】1984年,Light等提出了漏斗图,一般以单个研究的效应量为横坐标,样本含量为纵坐标做的散点图。效应量可以为RR、OR和死亡比或者其对数值等

1984年,Light等提出了漏斗图,一般以单个研究的效应量为横坐标,样本含量为纵坐标做的散点图。效应量可以为RR、OR和死亡比或者其对数值等。理论上讲,被纳入Meta分析的各独立研究效应的点估计,在平面坐标系中的集合应为一个倒置的漏斗形,因此称为漏斗图。


漏斗图的横坐标可以是效应量(OR,RR,HR,SWD等),也可以是效应量的对数,当横坐标是效应量的时候,纵坐标可以是样本含量或者是效应量的标准误,也可以说效应量对数的标准误。

当纵轴是样本含量的时候,一般的小样本研究所估计的效应量变异程度较大,因而其效应量点估计分散在漏斗图的底部;随着样本含量的增加,大样本研究所估计的效应量的变异程度逐渐降低,因而其效应量点估计逐渐趋于密集在一个较窄的范围内。如果是标准误,按统计抽样的理论来说,样本量越大,结果越可靠,方差越小,标准误也越小;样本量越小,方差越大,波动越大,标准误也越大。因此,最终的结果都是呈一个倒置的漏斗形。


漏斗图基于统计理论:

1、样本量越大,结果越可靠,方差越小,置信区间窄;样本量越小,方差越大,波动越大,置信区间宽。每个研究可以看成一次随机抽样;

2、样本数越大的,研究的数目越少;样本数少的,研究数目多。

很多倒漏斗图的下面点比上面点多从而形成了倒置的图形。横坐标是效应量的对数,纵坐标是效应量对数的标准误的时候,最后的结果也是一个倒置的漏斗形。

分享到: 编辑:wangmin

就业培训申请领取
您的姓名
您的电话
意向课程
点击领取

环球青藤

官方QQ

扫描上方二维码或点击一键加群,免费领取大礼包,加群暗号:青藤。 一键加群

绑定手机号

应《中华人民共和国网络安全法》加强实名认证机制要求,同时为更加全面的体验产品服务,烦请您绑定手机号.

预约成功

本直播为付费学员的直播课节

请您购买课程后再预约

环球青藤移动课堂APP 直播、听课。职达未来!

安卓版

下载

iPhone版

下载
环球青藤官方微信服务平台

刷题看课 APP下载

免费直播 一键购课

代报名等人工服务

课程咨询 学员服务 公众号

扫描关注微信公众号

APP

扫描下载APP

返回顶部