首页直播App学习中心
当前位置: 首页 > MBA > MBA备考资料 > MBA数学:从数列递推到N球配对问题

MBA数学:从数列递推到N球配对问题

更新时间:2017-06-07 15:52:33 来源:环球网校 浏览43收藏12

MBA报名、考试、查分时间 免费短信提醒

地区

  • 北京
  • 上海
  • 天津
  • 重庆
  • 河北
  • 山东
  • 辽宁
  • 黑龙江
  • 吉林
  • 甘肃
  • 青海
  • 河南
  • 江苏
  • 湖北
  • 湖南
  • 江西
  • 浙江
  • 广东
  • 云南
  • 福建
  • 台湾
  • 海南
  • 山西
  • 四川
  • 陕西
  • 贵州
  • 安徽
  • 广西
  • 内蒙
  • 西藏
  • 新疆
  • 宁夏
  • 兵团
获取验证 立即预约

请填写图片验证码后获取短信验证码

看不清楚,换张图片

免费获取短信验证码

摘要   本篇给出求简单递推数列通项公式的通用解法,并由此思路解一个老题  以下记A(N)为数列第N项  1、已知A1=1,A(N)=2A(N-1)+1,求数列通项公式  解:由题意,A(N)+1=2[A(N-1)+1]  即 A(N)+1是以2为首项

  本篇给出求简单递推数列通项公式的通用解法,并由此思路解一个老题

  以下记A(N)为数列第N项

  1、已知A1=1,A(N)=2A(N-1)+1,求数列通项公式

  解:由题意,A(N)+1=2[A(N-1)+1]

  即 A(N)+1是以2为首项,2为公比的等比数列

  因此 A(N)+1=2^N

  数列通项公式为 A(N)=2^N-1

  2、通用算法

  已知A1=M,A(N)=P*A(N-1)+Q,P《》1,求数列通项公式

  解:设 A(N)+X=P*[A(N-1)+X]

  解得 X=Q/(P-1)

  因此 A(N)+Q/(P-1)是以A1+Q/(P-1)为首项,P为公比的等比数列

  由此可算出A(N)通项公式

  3、已知A1和A2, A(N)=P*A(N-1)+Q*A(N-2),求数列通项公式

  解题思路:设 A(N)+X*A(N-1)=Y*[A(N-1)+X*A(N-2)]

  代入原式可得出两组解,对两组X,Y分别求出

  A(N)+X*A(N-1)的通项公式

  再解二元一次方程得出A(N)

  注:可能只有一组解,但另有解决办法。

  环球网校友情提示:环球网校在职研究生考试频道为您整理:MBA数学:从数列递推到N球配对问题,考生亦或登录在职研究生论坛,与广大考友一起交流!

    编辑推荐:

    MBA备考攻坚阶段机智安排英语复习

    MBA英语小作文:技巧为先 文采其次

    MBA英语写作五大攻克方法

    MBA英语翻译不仅仅只是简单直译

  4、现在用上面的思路来解决一个著名的问题:

  N个球和N个盒子分别编号从1到N,N个球各放入一个盒子,求没有球与盒子编号相同的放法总数。

  解:设A(N)为球数为N时满足条件的放法(以下称无配对放法)总数,

  易知A1=0,A2=1

  当N》2时,一号球共有N-1种放法,假设1号球放入X号盒子

  在剩下的N-1个球和N-1个盒子中,如X号球正好放入1号盒子,

  问题等价于有N-2个球的无配对放法,放法总数为:A(N-2)

  在剩下的N-1个球和N-1个盒子中,如X号球没有放入1号盒子,

  则可以把X号球看作1号球,问题等价于有N-1个球的无配对放法,

  放法总数为:A(N-1)

  因此有 A(N)=(N-1)*[A(N-1)+A(N-2)]

  上式可变换为: A(N)-NA(N-1)

  =-[A(N-1)-(N-1)*A(N-2)]

  按等比数列得出: A(N)-NA(N-1)=(-1)^N

  上式除以N!得出:

  A(N) A(N-1) (-1)^N

  ------- = ---------------- + -----------------

  N! (N-1)! N!

  把 A(N)/N!当作新的数列, 把(-1)^N/N!也作为一个数列

  则 A(N)等于数列 (-1)^N/N!从第二项到第N项的和再乘以N

  另外可得出:

  N球恰有K球与盒子配对的放法总数为: C(N,K)*A(N-K)

  环球网校友情提示:环球网校在职研究生考试频道为您整理:MBA数学:从数列递推到N球配对问题,考生亦或登录在职研究生论坛,与广大考友一起交流!

    编辑推荐:

    MBA备考攻坚阶段机智安排英语复习

    MBA英语小作文:技巧为先 文采其次

    MBA英语写作五大攻克方法

    MBA英语翻译不仅仅只是简单直译

分享到: 编辑:环球网校

资料下载 精选课程 老师直播 真题练习
今日直播 更多
峰会

AI+建工实训 DeepSeek清单算量实操

AI+建工 AI+建工

今日11:00-11:45

于坤老师

峰会

AI +coze实操:打造你的专属建工规范文档智能知识库

AI智能体 AI智能体

04月29日 11:00-13:30

赵国强

峰会

AI时代,职场差距继续拉大

数据分析师 数据分析

04月29日 12:00-14:00

高容国

峰会

AI重构人力未来 | 招聘效率提升50%的3大数据法则

AI+人力 AI+人力

04月29日 12:00-14:00

王佩军

更多直播

MBA资格查询

MBA每日一练 打卡日历

0
累计打卡
0
打卡人数
去打卡

预计用时3分钟

环球网校移动课堂APP 直播、听课。职达未来!

安卓版

下载

iPhone版

下载

课程咨询

售后服务

APP立减150

注册APP

购课满减券免费领

出版物经营许可证|京B2-20210770| 京公网安备 11010802033350号|京ICP备16038139号|节目制作经营许可证(京)字20130号
知春路校区:北京市海淀区知春路7号致真大厦D座4层北区(地铁10号线西土城出A口)|邮编:100191
版权所有 2003-2024 北京环球创智软件有限公司|联系客服|营业执照

预约成功
您已经成功预约 考试短信提醒
扫码添加客服微信号
添加客服微信号,邀您进群领取学习资料、直播课程等,还能和其他小伙伴一起学习交流。添加时请回复领取

绑定手机号

应《中华人民共和国网络安全法》加强实名认证机制要求,同时为更加全面的体验产品服务,烦请您绑定手机号.

在线咨询