当前位置: 首页 > 平面设计 > 平面设计实战技能 > 平面设计图像处理 > 图像处理怎么学

图像处理怎么学

发布时间:2020年06月19日 01:38:29 来源: 点击量:729

【摘要】所谓数字图像处理就是利用计算机对图像信息进行加工以满足人的视觉心理或者应用需求的行为。实质上是一段能够被计算机还原显示和输出为一幅

所谓数字图像处理就是利用计算机对图像信息进行加工以满足人的视觉心理或者应用需求的行为。实质上是一段能够被计算机还原显示和输出为一幅图像的数字码。 21世纪是一个充满信息的时代,图像作为人类感知世界的视觉基础,是人类获取信息、表达信息和传递信息的重要手段。

方法/步骤

图像处理 image processing 用计算机对图像进行分析,以达到所需结果的技术。又称影像处理。 基本内容 图像处理一般指数字图像处理。数字图像是指用数字摄像机、扫描仪等设备经过采样和数字化得到的一个大的二维数组,该数组的元素称为像素,其值为一整数,称为灰度值。图像处理技术的主要内容包括图像压缩,增强和复原,匹配、描述和识别3个部分。 图像压缩 由数字化得到的一幅图像的数据量十分巨大,一幅典型的数字图像通常由500×500或1000×1000个像素组成。如果是动态图像,是其数据量更大。因此图像压缩对于图像的存储和传输都十分必要。 有两类压缩算法,即不失真的方法和近似的方法。最常用的不失真压缩取空间或时间上相邻像素值的差,再进行编码。游程码就是这类压缩码的例子。近似压缩算法大都采用图像交换的途径,例如对图像进行快速傅里叶变换或离散的余弦变换。著名的、已作为图像压缩国际标准的JPEG和MPEG均属于近似压缩算法。前者用于静态图像,后者用于动态图像。它们已由芯片实现。 图像增强和复原 图像增强的目标是改进图片的质量,例如增加对比度,去掉模糊和噪声,修正几何畸变等;图像复原是在假定已知模糊或噪声的模型时,试图估计原图像的一种技术。 图像增强按所用方法可分成频率域法和空间域法。前者把图像看成一种二维信号,对其进行基于二维傅里叶变换的信号增强。采用低通滤波(即只让低频信号通过)法,可去掉图中的噪声;采用高通滤波法,则可增强边缘等高频信号,使模糊的图片变得清晰。具有代表性的空间域算法有局部求平均值法和中值滤波(取局部邻域中的中间像素值)法等,它们可用于去除或减弱噪声。 早期的数字图像复原亦来自频率域的概念。现代采取的是一种代数的方法,即通过解一个大的方程组来复原理想的图片。 图像匹配、描述和识别 对图像进行比较和配准,通过分制提取图像的特征及相互关系,得到图像符号化的描述,再把它同模型比较,以确定其分类。图像匹配试图建立两张图片之间的几何对应关系,度量其类似或不同的程度。匹配用于图片之间或图片与地图之间的配准,例如检测不同时间所拍图片之间景物的变化,找出运动物体的轨迹。 从图像中抽取某些有用的度量、数据或信息称为图像分析。图像分析的基本步骤是把图像分割成一些互不重叠的区域,每一区域是像素的一个连续集,度量它们的性质和关系,最后把得到的图像关系结构和描述景物分类的模型进行比较,以确定其类型。识别或分类的基础是图像的相似度。一种简单的相似度可用区域特征空间中的距离来定义。另一种基于像素值的相似度量是图像函数的相关性。最后一种定义在关系结构上的相似度称为结构相似度。 以提高图像质量为目的的图像增强和复原对于一些难以得到的图片或者在拍摄条件十分恶劣情况下得到的图片都有广泛的应用。例如从太空中拍摄到的地球或其他星球的照片,用电子显微镜或X光拍摄的生物医疗图片等。 以图片分析和理解为目的的分割、描述和识别将用于各种自动化的系统,如字符和图形识别、用机器人进行产品的装配和检验、自动军事目标识别和跟踪、指纹识别、X光照片和血样的自动处理等。在这类应用中,往往需综合应用模式识别和计算机视觉等技术,图像处理更多的是作为前置处理而出现的。 多媒体应用的掀起,对图像压缩技术的应用起了很大的推动作用。图像,包括录像带一类动态图像将转为数字图像,并和文字、声音、图形一起存储在计算机内,显示在计算机的屏幕上。它的应用将扩展到教育、培训和娱乐等新的领域。 图像处理(image processing )使用计算机对图像进行一系列加工,以达到所需的结果。常见的处理有图像数字化、图像编码、图像增强、图像复原、图像分割和图像分析等。图像处理一般指数字图像处理。虽然某些处理也可以用光学方法或模拟技术实现,但它们远不及数字图像处理那样灵活和方便,因而数字图像处理成为图像处理的主要方面。 图像数字化 通过取样和量化过程将一个以自然形式存在的图像变换为适合计算机处理的数字形式。图像在计算机内部被表示为一个数字矩阵,矩阵中每一元素称为像素。图像数字化需要专门的设备,常见的有各种电子的和光学的扫描设备,还有机电扫描设备和手工操作的数字化仪。 图像编码 对图像信息编码,以满足传输和存储的要求。编码能压缩图像的信息量,但图像质量几乎不变。为此,可以采用模拟处理技术,再通过模-数转换得到编码,不过多数是采用数字编码技术。编码方法有对图像逐点进行加工的方法,也有对图像施加某种变换或基于区域、特征进行编码的方法。脉码调制、微分脉码调制、预测码和各种变换都是常用的编码技术。 图像增强 使图像清晰或将其转换为更适合人或机器分析的形式。与图像复原不同,图像增强并不要求忠实地反映原始图像。相反,含有某种失真(例如突出轮廓线)的图像可能比无失真的原始图像更为清晰。常用的图像增强方法有:①灰度等级直方图处理:使加工后的图像在某一灰度范围内有更好的对比度;②干扰抑制:通过低通滤波、多图像平均、施行某类空间域算子等处理,抑制叠加在图像上的随机性干扰;③边缘锐化:通过高通滤波、差分运算或某种变换,使图形的轮廓线增强;④伪彩色处理:将黑白图像转换为彩色图像,从而使人们易于分析和检测图像包含的信息。 图像复原 除去或减少在获得图像过程中因各种原因产生的退化。这类原因可能是光学系统的像差或离焦、摄像系统与被摄物之间的相对运动、电子或光学系统的噪声和介于摄像系统与被摄像物间的大气湍流等。图像复原常用二种方法。当不知道图像本身的性质时,可以建立退化源的数学模型,然后施行复原算法除去或减少退化源的影响。当有了关于图像本身的先验知识时,可以建立原始图像的模型,然后在观测到的退化图像中通过检测原始图像而复原图像。 图像分割 将图像划分为一些互不重叠的区域,每一区域是像素的一个连续集。通常采用把像素分入特定区域的区域法和寻求区域之间边界的境界法。区域法根据被分割对象与背景的对比度进行阈值运算,将对象从背景中分割出来。有时用固定的阈值不能得到满意的分割,可根据局部的对比度调整阈值,这称为自适应阈值。境界法利用各种边缘检测技术,即根据图像边缘处具有很大的梯度值进行检测。这两种方法都可以利用图像的纹理特性实现图像分割。 图像分析 从图像中抽取某些有用的度量、数据或信息。目的是得到某种数值结果,而不是产生另一个图像。图像分析的内容和模式识别、人工智能的研究领域有交叉,但图像分析与典型的模式识别有所区别。图像分析不限于把图像中的特定区域按固定数目的类别加以分类,它主要是提供关于被分析图像的一种描述。为此,既要利用模式识别技术,又要利用关于图像内容的知识库,即人工智能中关于知识表达方面的内容。图像分析需要用图像分割方法抽取出图像的特征,然后对图像进行符号化的描述。这种描述不仅能对图像中是否存在某一特定对象作出回答,还能对图像内容作出详细描述。 图像处理的各个内容是互相有联系的。一个实用的图像处理系统往往结合应用几种图像处理技术才能得到所需要的结果。图像数字化是将一个图像变换为适合计算机处理的形式的第一步。图像编码技术可用以传输和存储图像。图像增强和复原可以是图像处理的最后目的,也可以是为进一步的处理作准备。通过图像分割得出的图像特征可以作为最后结果,也可以作为下一步图像分析的基础。

分享到: 编辑:cocomi

就业培训申请领取
您的姓名
您的电话
意向课程
点击领取

环球青藤

官方QQ

扫描上方二维码或点击一键加群,免费领取大礼包,加群暗号:青藤。 一键加群

绑定手机号

应《中华人民共和国网络安全法》加强实名认证机制要求,同时为更加全面的体验产品服务,烦请您绑定手机号.

预约成功

本直播为付费学员的直播课节

请您购买课程后再预约

环球青藤移动课堂APP 直播、听课。职达未来!

安卓版

下载

iPhone版

下载
环球青藤官方微信服务平台

刷题看课 APP下载

免费直播 一键购课

代报名等人工服务

课程咨询 学员服务 公众号

扫描关注微信公众号

APP

扫描下载APP

返回顶部