2021年考研数学公式总结之两角和差篇part.2
考研数学公式总结之两角和差篇:
三倍角公式:
三倍角的正弦、余弦和正切公式:
sin3&alpha=3sin&alpha-4sin^3(&alpha)
cos3&alpha=4cos^3(&alpha)-3cos&alpha
tan3&alpha=[3tan&alpha-tan^3(&alpha)]/[1-3tan^2(&alpha)]
三倍角公式推导:
附推导:
tan3&alpha=sin3&alpha/cos3&alpha
=(sin2&alphacos&alpha+cos2&alphasin&alpha)/(cos2&alphacos&alpha-sin2&alphasin&alpha)
=(2sin&alphacos^2(&alpha)+cos^2(&alpha)sin&alpha-sin^3(&alpha))/(cos^3(&alpha)-cos&alphasin^2(&alpha)-2sin^2(&alpha)cos&alpha)
上下同除以cos^3(&alpha),得:
tan3&alpha=(3tan&alpha-tan^3(&alpha))/(1-3tan^2(&alpha))
sin3&alpha=sin(2&alpha+&alpha)=sin2&alphacos&alpha+cos2&alphasin&alpha
=2sin&alphacos^2(&alpha)+(1-2sin^2(&alpha))sin&alpha
=2sin&alpha-2sin^3(&alpha)+sin&alpha-2sin^3(&alpha)
=3sin&alpha-4sin^3(&alpha)
cos3&alpha=cos(2&alpha+&alpha)=cos2&alphacos&alpha-sin2&alphasin&alpha
=(2cos^2(&alpha)-1)cos&alpha-2cos&alphasin^2(&alpha)
=2cos^3(&alpha)-cos&alpha+(2cos&alpha-2cos^3(&alpha))
=4cos^3(&alpha)-3cos&alpha
即
sin3&alpha=3sin&alpha-4sin^3(&alpha)
cos3&alpha=4cos^3(&alpha)-3cos&alpha
三倍角公式联想记忆:
记忆方法:谐音、联想
正弦三倍角:3元减4元3角(欠债了(被减成负数),所以要“挣钱”(音似“正弦”))
余弦三倍角:4元3角减3元(减完之后还有“余”)
Ps:注意函数名,即正弦的三倍角都用正弦表示,余弦的三倍角都用余弦表示。
另外的记忆方法:
正弦三倍角:山无司令(谐音为三无四立)三指的是"3倍"sin&alpha,无指的是减号,四指的是"4倍",立指的是sin&alpha立方
余弦三倍角:司令无山与上同理
考研数学公式总结之两角和差篇:
和差化积公式
三角函数的和差化积公式
sin&alpha+sin&beta=2sin[(&alpha+&beta)/2]·cos[(&alpha-&beta)/2]
sin&alpha-sin&beta=2cos[(&alpha+&beta)/2]·sin[(&alpha-&beta)/2]
cos&alpha+cos&beta=2cos[(&alpha+&beta)/2]·cos[(&alpha-&beta)/2]
cos&alpha-cos&beta=-2sin[(&alpha+&beta)/2]·sin[(&alpha-&beta)/2]
三角函数的积化和差公式:
sin&alpha·cos&beta=0.5[sin(&alpha+&beta)+sin(&alpha-&beta)]
cos&alpha·sin&beta=0.5[sin(&alpha+&beta)-sin(&alpha-&beta)]
cos&alpha·cos&beta=0.5[cos(&alpha+&beta)+cos(&alpha-&beta)]
sin&alpha·sin&beta=-0.5[cos(&alpha+&beta)-cos(&alpha-&beta)]
和差化积公式推导:
附推导:
首先,我们知道sin(a+b)=sinacosb+cosasinb,sin(a-b)=sinacosb-cosasinb
我们把两式相加就得到sin(a+b)+sin(a-b)=2sinacosb
所以,sinacosb=(sin(a+b)+sin(a-b))/2
同理,若把两式相减,就得到cosasinb=(sin(a+b)-sin(a-b))/2
同样的,我们还知道cos(a+b)=cosacosb-sinasinb,cos(a-b)=cosacosb+sinasinb
所以,把两式相加,我们就可以得到cos(a+b)+cos(a-b)=2cosacosb
所以我们就得到,cosacosb=(cos(a+b)+cos(a-b))/2
同理,两式相减我们就得到sinasinb=-(cos(a+b)-cos(a-b))/2
这样,我们就得到了积化和差的四个公式:
sinacosb=(sin(a+b)+sin(a-b))/2
cosasinb=(sin(a+b)-sin(a-b))/2
cosacosb=(cos(a+b)+cos(a-b))/2
sinasinb=-(cos(a+b)-cos(a-b))/2
有了积化和差的四个公式以后,我们只需一个变形,就可以得到和差化积的四个公式。
我们把上述四个公式中的a+b设为x,a-b设为y,那么a=(x+y)/2,b=(x-y)/2
把a,b分别用x,y表示就可以得到和差化积的四个公式:
sinx+siny=2sin((x+y)/2)cos((x-y)/2)
sinx-siny=2cos((x+y)/2)sin((x-y)/2)
cosx+cosy=2cos((x+y)/2)cos((x-y)/2)
cosx-cosy=-2sin((x+y)/2)sin((x-y)/2)
今天的内容是2021考研数学公式总结之两角和差篇,一起来看看吧,希望对2021年考研备考的考生有所帮助。有需要的话请使用环球网校提供的 免费预约短信提醒,帮助你更快的获取考试动态。点击下方免费下载按钮,还可下载考研相关备考资料。
最新资讯
- 25考研专业课备考全攻略:高效提分技巧揭秘2024-11-01
- 25年考研英语作文素材——Part 32024-08-26
- 25年考研英语作文素材——Part 42024-08-26
- 25年考研英语作文素材——Part 22024-08-23
- 25年考研英语作文素材——Part 12024-08-23
- 考研英语大作文常见话题15则 Part 22024-07-14
- 考研英语大作文常见话题15则 Part 12024-07-13
- 2025年考研英语试卷结构,你了解吗?2024-06-09
- 2025年考研政治试卷结构是什么呢?2024-06-09
- 2025年考研政治高效复习策略大公开2024-05-05