1、数据清理
数据清理(data cleaning) 的主要思想是通过填补缺失值、光滑噪声数据,平滑或删除离群点,并解决数据的不一致性来“清理“数据。如果用户认为数据时脏乱的,他们不太会相信基于这些数据的挖掘结果,即输出的结果是不可靠的。
2、数据集成
数据分析任务多半涉及数据集成。数据集成将多个数据源中的数据结合成、存放在一个一致的数据存储,如数据仓库中。这些源可能包括多个数据库、数据方或一般文件。
3、数据规约
数据归约技术可以用来得到数据集的归约表示,它小得多,但仍接近地保持原数据的完整性。 这样,在归约后的数据集上挖掘将更有效,并产生相同(或几乎相同)的分析结果。
4、数据变换
数据变换包括对数据进行规范化,离散化,稀疏化处理,达到适用于挖掘的目的。
声明:本网站尊重并保护知识产权,根据《信息网络传播权保护条例》,如果用户发布的作品侵犯了您的权利,请联系管理员:wupeng@hqwx.com
环球青藤
官方QQ群扫描上方二维码或点击一键加群,免费领取大礼包,加群暗号:青藤。 一键加群