1、数据获取
从字面的意思上讲,就是获取数据。数据获取看似简单,但是需要把握对问题的商业理解,转化成数据问题来解决,直白点讲就是需要哪些数据,从哪些角度来分析,界定问题后,再进行数据采集。此环节,需要数据分析师具备结构化的逻辑思维。
2、数据处理
数据的处理需要掌握有效率的工具,这些工具有很多,比如Excel、SQL等等,Excel及高端技能:基本操作、函数公式、数据透视表、VBA程序开发。
3、分析数据
分析数据往往需要各类统计分析模型,如关联规则、聚类、分类、预测模型等等。因此,熟练掌握一些统计分析工具不可免。我们可学习SPSS,而SPSS不用编程,简单易学。十分适合新手,同时经典挖掘软件,需要编程。而R语言开源软件,新流行,对非结构化数据处理效率上更高,需编程。
4、数据可视化
就目前而言,很多数据分析工具已经涵盖了数据可视化部分,只需要把数据结果进行有效的呈现和演讲汇报就可以了。你所做的前期一系列的工作展示给你的领导。
声明:本网站尊重并保护知识产权,根据《信息网络传播权保护条例》,如果用户发布的作品侵犯了您的权利,请联系管理员:wupeng@hqwx.com
环球青藤
官方QQ群扫描上方二维码或点击一键加群,免费领取大礼包,加群暗号:青藤。 一键加群