1、更智能、负责任的、可扩展的AI
人工智能和机器学习正在带来更大的影响,要求企业采用新技术构建更智能的、消耗数据更少的、符合道德原则的、更具弹性的AI解决方案。企业组织通过部署更智能、更负责任的、更可扩展的AI,将利用学习算法和可解释的系统加速价值实现给业务带来更大影响力。
2、可组合式的数据和分析
开放的、容器化的分析架构让数据分析功能可组合性更强。可组合式的数据分析利用来自多个数据、分析和AI解决方案的组件,快速构建灵活且用户友好型的智能应用,从而帮助数据分析领导者将洞察和行动连接在一起。随着数据重心转移到云端,可组合式的数据分析将成为一种更加敏捷的方式,开发支持云市场、低代码和无代码解决方案的分析应用。
3、数据架构是基础
更高程度的数字化和不再受约束的消费者,推动着数据分析领导者越来越多地使用数据架构来一个对企业组织数据资产日益加剧的多样化、分布式、规模和复杂性。数据架构利用分析功能来持续监控数据管道,通过对数据资产的持续分析,支持各种数据的设计、部署和使用,缩短集成时间30%,缩短部署时间30%,缩短维护时间70%。
4、从大数据到小数据、宽数据
疫情给企业带来的极端变革,导致那些基于大量历史数据的机器学习和人工智能模型变得不那么重要了。同时,由人类和AI做出的决策变得更加复杂和苛刻,要求数据分析领导者拥有更多种类的数据才能更好地了解态势。
声明:本网站尊重并保护知识产权,根据《信息网络传播权保护条例》,如果用户发布的作品侵犯了您的权利,请联系管理员:wupeng@hqwx.com
环球青藤
官方QQ群扫描上方二维码或点击一键加群,免费领取大礼包,加群暗号:青藤。 一键加群