数学功底:微积分是严格要掌握的。不一定要掌握多元微积分,但一元微积分是必须要熟练掌握并使用的。另外线性代数一定要精通,特别是矩阵的运算、向量空间、秩等概念。当前机器学习框架中很多计算都需要用到矩阵的乘法、转置或是求逆。虽然很多框架都直接提供了这样的工具,但我们至少要了解内部的原型原理,比如如何高效判断一个矩阵是否存在逆矩阵并如何计算等。
数理统计:概率论和各种统计学方法要做到基本掌握,比如贝叶斯概率如何计算?概率分布是怎么回事?虽不要求精通,但对相关背景和术语一定要了解。
交互式数据分析框架:这里并不是指SQL或数据库查询,而是像Apache Hive或Apache Kylin这样的分析交互框架。开源社区中有很多这样类似的框架,可以使用传统的数据分析方式对大数据进行数据分析或数据挖掘。笔者有过使用经验的是Hive和Kylin。不过Hive特别是Hive1是基于MapReduce的,性能并非特别出色,而Kylin采用数据立方体的概念结合星型模型,可以做到很低延时的分析速度,况且Kylin是第一个研发团队主力是中国人的Apache孵化项目,因此日益受到广泛的关注。
机器学习框架:机器学习当前真是火爆宇宙了,人人都提机器学习和AI,但笔者一直认为机器学习恰似几年前的云计算一样,目前虽然火爆,但没有实际的落地项目,可能还需要几年的时间才能逐渐成熟。不过在现在就开始储备机器学习的知识总是没有坏处的。
声明:本网站尊重并保护知识产权,根据《信息网络传播权保护条例》,如果用户发布的作品侵犯了您的权利,请联系管理员:wupeng@hqwx.com
环球青藤
官方QQ群扫描上方二维码或点击一键加群,免费领取大礼包,加群暗号:青藤。 一键加群