在玩python学习机器时,对于那种对随机性不太敏感的模型,理论上说可以不打乱。但敏感不敏感也跟数据量级,复杂度,算法内部计算机制都有关,目前并没有一个经纬分明的算法随机度敏感度列表。既然打乱数据并不会得到一个更差的结果,一般推荐的做法就是打乱全量数据。那怎么打乱呢?今天小编就教大家在python中打乱数据集和标签,来看看吧。
方法一、打乱索引Index
import numpy as np
index = [i for i in range(len(test_data))] # test_data为测试数据
np.random.shuffle(index) # 打乱索引
test_data = test_data[index]
test_label = test_label[index]
方法二:通过数组来shuffle来打乱
image_list=[] # list of images
label_list=[] # list of labels
temp = np.array([image_list, label_list])
temp = temp.transpose()
np.random.shuffle(temp)
images = temp[:, 0] # array of images (N,)
labels = temp[:, 1]
方法三:通过随机数打乱
import numpy as np
np.random.seed(12)
np.random.shuffle(test_data)
np.random.seed(12)
np.random.shuffle(test_label)
以上就是小编整理的用python打乱数据的方法,如果你在玩python机器学习的话,可以采取以上方法打乱数据哦~更多学习推荐:python学习网。
声明:本网站尊重并保护知识产权,根据《信息网络传播权保护条例》,如果用户发布的作品侵犯了您的权利,请联系管理员:wupeng@hqwx.com
环球青藤
官方QQ群扫描上方二维码或点击一键加群,免费领取大礼包,加群暗号:青藤。 一键加群