当前位置: 首页 > Python编程 > Python编程实战技能 > Python编程技术分享 > Python中的进程池是什么

Python中的进程池是什么

发布时间:2020年09月27日 08:34:14 来源: 点击量:675

【摘要】进程池Pool当需要创建的子进程数量不多时,可以直接利用multiprocessing中的Process动态成生多个进程,但如果是上百甚至上千个目标,手动的

进程池Pool

当需要创建的子进程数量不多时,可以直接利用multiprocessing中的Process动态成生多个进程,但如果是上百甚至上千个目标,手动的去创建进程的工作量巨大,此时就可以用到multiprocessing模块提供的Pool方法。

初始化Pool时,可以指定一个最大进程数,当有新的请求提交到Pool中时,如果池还没有满,那么就会创建一个新的进程用来执行该请求;但如果池中的进程数已经达到指定的最大值,那么该请求就会等待,直到池中有进程结束,才会创建新的进程来执行。

from multiprocessing import Pool
import os
import time
import random
def worker(msg):
    t_start = time.time()
    print("%d进程开始执行%d"%(os.getpid(),msg))
    #random.random()随机生成0~1之间的浮点数
    time.sleep(random.random()*2) 
    t_stop = time.time()
    print(msg,"执行完毕,耗时%0.2f"%(t_stop-t_start))
if __name__ == '__main__':
    po=Pool(3) #定义一个进程池,最大进程数3
    for i in range(0,10):
        #Pool.apply_async(要调用的目标,(传递给目标的参数元祖,))
        #每次循环将会用空闲出来的子进程去调用目标
        po.apply_async(worker,(i,))
    print("----start----")
    po.close() #关闭进程池,关闭后po不再接收新的请求
    po.join() #等待po中所有子进程执行完成,必须放在close语句之后
    print("-----end-----")

运行结果为:

----start----
4353进程开始执行0
4354进程开始执行1
4355进程开始执行2
2,执行完毕,耗时0.20
4355进程开始执行3
1,执行完毕,耗时1.19
4354进程开始执行4
4,执行完毕,耗时0.37
4354进程开始执行5
0,执行完毕,耗时1.57
4353进程开始执行6
5,执行完毕,耗时0.19
4354进程开始执行7
3,执行完毕,耗时1.63
4355进程开始执行8
6,执行完毕,耗时0.49
4353进程开始执行9
8,执行完毕,耗时0.75
7,执行完毕,耗时0.90
9,执行完毕,耗时0.63
-----end-----

相关推荐:《Python视频教程》

multiprocessing.Pool常用函数解析:

apply_async(func[, args[, kwds]]) :使用非阻塞方式调用func(并行执行,堵塞方式必须等待上一个进程退出才能执行下一个进程),args为传递给func的参数列表,kwds为传递给func的关键字参数列表;

apply(func[, args[, kwds]]):使用阻塞方式调用func

close():关闭Pool,使其不再接受新的任务;

terminate():不管任务是否完成,立即终止;

join():主进程阻塞,等待子进程的退出, 必须在close或terminate之后使用;

apply堵塞式

from multiprocessing import Pool
import os
import time
import random
def worker(msg):
    t_start = time.time()
    print("%d进程开始执行%d"%(os.getpid(),msg))
    #random.random()随机生成0~1之间的浮点数
    time.sleep(random.random()*2) 
    t_stop = time.time()
    print(msg,"执行完毕,耗时%0.2f"%(t_stop-t_start))
if __name__ == '__main__':
    po=Pool(3) #定义一个进程池,最大进程数3
    for i in range(0,10):
        #Pool.apply_async(要调用的目标,(传递给目标的参数元祖,))
        #每次循环将会用空闲出来的子进程去调用目标
        po.apply(worker,(i,))
    print("----start----")
    po.close() #关闭进程池,关闭后po不再接收新的请求
    po.join() #等待po中所有子进程执行完成,必须放在close语句之后
    print("-----end-----")

运行结果为:

4400进程开始执行0
0,执行完毕,耗时1.89
4401进程开始执行1
1,执行完毕,耗时1.91
4402进程开始执行2
2,执行完毕,耗时1.64
4400进程开始执行3
3,执行完毕,耗时1.16
4401进程开始执行4
4,执行完毕,耗时1.85
4402进程开始执行5
5,执行完毕,耗时0.29
4400进程开始执行6
6,执行完毕,耗时0.19
4401进程开始执行7
7,执行完毕,耗时1.19
4402进程开始执行8
8,执行完毕,耗时0.61
4400进程开始执行9
9,执行完毕,耗时1.08
----start----
-----end-----

说明:通过运行结果可以看出来,阻塞式会等进程池中的进程都执行完毕了才会运行主进程的start和end的打印

相关推荐:

Python中的进程是什么

分享到: 编辑:wangmin

就业培训申请领取
您的姓名
您的电话
意向课程
点击领取

环球青藤

官方QQ

扫描上方二维码或点击一键加群,免费领取大礼包,加群暗号:青藤。 一键加群

绑定手机号

应《中华人民共和国网络安全法》加强实名认证机制要求,同时为更加全面的体验产品服务,烦请您绑定手机号.

预约成功

本直播为付费学员的直播课节

请您购买课程后再预约

环球青藤移动课堂APP 直播、听课。职达未来!

安卓版

下载

iPhone版

下载
环球青藤官方微信服务平台

刷题看课 APP下载

免费直播 一键购课

代报名等人工服务

课程咨询 学员服务 公众号

扫描关注微信公众号

APP

扫描下载APP

返回顶部